Recent content by moyo

  1. M

    MHB Maximising the difference between multiple distributions

    So there will be a loss function for each image in the training set, and we process the image with the quadtree algorithm before in order to get its parameters.
  2. M

    MHB Maximising the difference between multiple distributions

    I am trying to come up with a parent loss function for the following neural network model. On top of that the algorithm for processing an image would also be helpful. The quad-tree compression algorithm divides an image into ever increasingly small segments (squares) and stops in a particular...
  3. M

    MHB Calculating The Nth Rational Number

    Thanks for the response :) https://www.geeksforgeeks.org/nth-rational-number-in-calkin-wilf-sequence/ I found that, its a whole algorithm for calculating the nth term.
  4. M

    MHB Calculating The Nth Rational Number

    Hallo If we specify a particular method for mapping the natural numbers to the rationals, could we also specify a "distance" between two consecutive terms in some general way. Also are we able to calculate the nth term in such a progression perhaps incorporating this distance function somehow...
  5. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    It is clear that the ratio has to be constant as the same ratio is present in any interval of the number line. So if the ratio , irrational uncountable/countable is an uncountable value... this can only be true when the countable goes to zero or irrational uncountable gets infinite... since...
  6. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    If we defined it then all the mystery goes away from this dichotomy of countable and uncountable as we could have defined it the opposite way around if we had felt like it... And if we figured it out ...what was the function used, and what is its derivative?
  7. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    I seem to sense that a ratio can only be infinite in a position where the denominator is zero.or the numerator is infinite and the denomenator is finite... one canse is undefined and in the other the denominator is infinite if e plug in the cardinals of the irrationals and rationals to...
  8. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    So my initial query could be rephrased as, what is the derivative of this function we are itterating?
  9. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    Cardinality can only reffer to a set... Are you simply saying that as we calculate the ratio of their densities , the value of the ratio approaches infinity as the number of iterations in our calculations gets arbitrarily large.
  10. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    so cardinality of a number is how many of them they are? Then you had said thsi: So the infinite aspect of the ratio cannot be its cardinality right since it only one ratio what does it reffer to?
  11. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    Thankyou for clearing that up for me. But that's confusing, the cardinality of the ratio is uncountably infinite.. if countability and uncountability be the property of a set...then how can a you have a property of a set bet the property of a ratio... 1/2 is not countable...it belongs to a...
  12. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    I probably haven't grasped these concepts well either , but its interesting,I always thought that since both rationals and irrationals were dense on the reals...then the statement that the rationals are fewer than irrationals was a statement about their relative densities...that rationals are...
  13. M

    MHB Calculus of Measures: Mapping Natural Numbers to Rationals

    i have one question concerning measure theory and this...could we map the natural numbers to the positive rationals...then observe the measure between the rationals being mapped ,as a value giving us a sense of how many irrationals are between them...then generate a function where we take the...
  14. M

    MHB Convexivity issues in a new type of network - NLP

    Hallo All! Im glad to be here... I have written a paper on a new type of network for NLP but i have lingering questions on how efficient and effective it is...this is a link to it on my blog... ABSTRACT submited So the following is a more formal framing of efficiency and effectiveness in...
  15. M

    MHB Vector Space Question: Basis Vectors and Relatedness Explained

    I am trying to frame this problem that i have. Would you suggest that it IS possible or not using vector fields form differential geometry. i know i have to do the research on my own , but a little direction would be nice.
Back
Top