does e^-x*x^(t-1)=
e^(t*ln(x)-ln(x)-x)
heres my reasoning:
x=e^ln(x)
e^-x*x^(t-1)=
e^-x*e^(ln(x)(t-1))=
e^-x*e^(t*ln(x)-ln(x))=
e^(t*ln(x)-ln(x)-x)
I want it in the latter form so that it is easier to take derivatives and antiderivatives. did i make any mistakes?
i got a book on differential equations that says a shortcut to solving the general differential equation f'(x)+p(x)f(x)=g(x) is to take the antiderivative of g(x) dx times exp(-p(x) dx times x) to solve for f(x) where dx represents the functions antiderivative. (i kno its supposed to represent...