Well, I'll try.
Assuming the rest reference frame of the floor, if I set the "downhill" acceleration of the block relative to the prism as ##a_b## while the acceleration of the prism as ##a##, then Newton's 2nd law on the block perpendicular to the inclined plane is $$
N - mg \cos{\alpha} = ma...
The figure shows a block of mass m above a prism of mass M with a slope α. The block is connected to the wall through a massless rope and pulley system. Assume all surfaces are smooth. Determine the acceleration of prism M with respect to the ground.
(Figure is the last attached image)
I can...
For more clarification, I don't really "know" where this question comes from, I just found it randomly on the internet, among other questions that I think belong to high school questions, so I find it really weird that this particular part of the question suddenly jumps in difficulty.
I did get...
The solutions for (a) and (b) are pretty straightforward, which I got 13 kW and 225 kW each, but when I try to solve for (c), I get stuck with this:
$$
\begin{align}
a &= \frac{F}{m} \nonumber\\
&= \frac{F_\text{max}-f(v)}{m} \nonumber\\
&= \frac{7(30)+6(30)^2 -70v-6v^2}{1.000} \nonumber\\...