Using the Mathematica I found that
\int_{0}^{\frac{\pi}{2}}Sin^2xdx=\frac{\pi}{4}\int_{0}^{\frac{\pi}{2}}Sin^4xdx=\frac{3\pi}{16}
\int_{0}^{\frac{\pi}{2}}Sin^6xdx=\frac{5\pi}{32}\int_{0}^{\frac{\pi}{2}}Sin^8xdx=\frac{35\pi}{256}
\int_{0}^{\frac{\pi}{2}}Sin^{10}xdx=\frac{63\pi}{512}
so I can...