Ok. So you said I replace (x-1) by a, and x=a+1
(x-1)^2 | x^k - 1 <=> (x-1)|k
(x-1)^2 * m = x^k -1 <=> (x-1)*z=k
(x-1)^2 *m = (x-1)(x^[k-1]+x^[k-2]+...+x+1) <=> (x-1)*z=k
(x-1)*m = x^[k-1]+x^[k-2]+...+x+1 <=> (x-1)*z=k
a*m=(a+1)^[k-1]+(a+1)^[k-2] + ...+ (a+1)+1 <=> a*z=k
And from here...
(x-1) divides k means (x-1) * p = k for some p positive integer. Then I multiply it by (x-1) I get the following (x-1)^2*p=k*(x-1). Then I can say that x^k-1 = k*(x-1)? But (x-1)*z=x^[k-1]+x^[k-2]+...+x+1.. ahh
Thank you so much, Al-Mahed!
Factoring x^k - 1 is (x-1)(x^[k-1]+x^[k-2]+...+x+1), and I see that (x-1)^2 divides x^k-1means that (x-1) divides (x^[k-1]+x^[k-2]+...+x+1), but I don't see how I connect this with (x-1) divides k..
Homework Statement
Prove that if V is a finite-dimensional vector space, then the space of all linear transformations on V is finite-dimensional, and find its dimension.
Homework Equations
The Attempt at a Solution