popitar
- 17
- 0
Let n>=2 and k>0 be integers. Prove that (n-1)^2 divides n^k -1 if and only if (n-1) divides k.
al-mahed said:you may want to check \varphi{([n-1]^2)}
popitar said:How do I check it?
al-mahed said:(...)and by Lagrange we know that either k=(n-1)\cdot \varphi{(n-1)} or wk=(n-1)\cdot \varphi{(n-1)}
popitar said:Thank you so much, Al-Mahed!
Factoring x^k - 1 is (x-1)(x^[k-1]+x^[k-2]+...+x+1), and I see that (x-1)^2 divides x^k-1means that (x-1) divides (x^[k-1]+x^[k-2]+...+x+1), but I don't see how I connect this with (x-1) divides k..
popitar said:I believe k elements.
popitar said:Can you explain this part :(a+1)^[k-1]+(a+1)^[k-2]+...+(a+1)+1 = a*S + k?