No need for all this!
The substitution : ## I = \frac { i + k } { \sqrt {2} } ## , ## J = - \frac { j + k } { \sqrt {2} } ##, where i,j,k are the usual quaternion units gives the isomorphic quaternionic algebra with the above rules:
## I^2 = -1 ## , ## J^2 = -1 ## , ## K^3 = -1 ##,
## K = IJ =...