Ok, so then adding d(z,w) to both sides gives d(x,y) ≤ d(x,z) + d(y,w) + d(z,w), so d(x,z) + d(z,w) + d(y,w) ≥ d(x,w) + d(w,y) by the triangle inequality, and d(x,w) + d(w,y) ≥ d(x,y) by the triangle inequality, so d(x,y) ≤ d(x,z) + d(y,w) + d(z,w). Thanks so much, now I understand where this is...