Recent content by sdrmybrat

  1. S

    PROOF (Sequences & Series); Can anyone help me out?

    Prove that: ∀ n€N [(the) sum of an (infinite?) series (a1,+a2,...+,an)] (where a_{n}=\frac{n}{(n+1)!}) \sum \frac{n}{(n+1)!} (is equal to/gives/yields) = 1 - \frac{1}{(n+1)!} Prove that: ∀ n \in N \sum \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!} THX in advance
Back
Top