Define the sequence of integers a1, a2, a3,... as follows:
a1 = 3
a2 = 6
an = 5an-1 - 6an-2 + 2 for all n ≥ 3
Prove that an = 1 + 2n-1 + 3n-1
------------------------------------------------------------------------------------------------
my attempt:
base case:
n=1
1+ 20 +30
= 1...
I factored out x^4 and got x^4 [(y/x)^4 + (y/x)^3 +(y/x)^2 + y/x +1] I see that all these terms have y/x so if i let t = y/x then it'll be x^4 [t^4 + t^3 +t^2 + t +1] (just so it is easier to visualize) but I am stuck, How do i simplify it further?