I can see that you can u1, u2 and u3 such that u1' = u2, u2' = u3, u1'' = u3 and u3' will give x''', but I'm not sure how you get it into the form in the question where there is a single u. I was thinking you needed to put the individual u's as a vector like u = (u1 u2 u3) and u' = (u1' u2' u3')...
Homework Statement
Hi,
Wondering if anyone can give me some help with reducing this 3rd order ODE to a first order problem, so it can be written in the form u' = f(u, t)
Homework Equations
The 3rd order ODE is: x'''(t) + x''(t) + 2x'(t) + 2x(t) = 2t^2 + 4t - 5;
The initial values...