I did initially, but found it problematic since it ends up becoming ½∫sinu/u. If you keep on doing it it winds up being a giant beast of an equation which doesn't appear to match μ2 at all.
I thought part of it might equal μ2, but that didn't happen either. The two just keep mismatching cosine...
Homework Statement
Solve by variation of parameters:
y" + 3y' + 2y = sinex
Homework Equations
Finding the complimentary yields:
yc = c1e-x + c2e-2x
The Attempt at a Solution
I set up the Wronskians and got:
μ1 = ∫e-2xsin(ex)dx
μ2 = -∫e-xsin(ex)dx
The problem is that I have no idea how to...