Yes it makes sense: in polar coordinates [itex] \hat{\phi} [\itex] is a unit vector perpendicular to [itex]\hat{r}[\itex]. Here is a picture of it dimensionally:
http://i.gyazo.com/6685ade5d3ab158b496077f7481551ea.png
Hi there,
I've been trying to solve the following problem, which I found looks pretty basic, but actually got me really confused about the definition of angular momentum.
Problem
The trajectory of a point mass m is described by the following equations, in spherical coordinates:
r(t) = r_0 +...
Thanks.
Oh I see... I thought that, as ω is specified to be given in s^(-1), we were expected to convert it into rad/s (so multiplying it by 2π)... But OK I understand it now.
So actually
(a) E = 2*38.5 = 77 J.
(b) P = 89.7 W.
Very nice, thanks!
This was a mistake indeed, it's supposed to be in the nominator.
So just a recap for (a):
W = ∫τ0 sin(ωt)dθ = -τ0 cos(ωt) → from 0 to π gives → Supplied Energy = W = τ0 cos(ωt)
We must consider that ω in the cos term has unit s^(-1) so we multiply it by 2π to have it in...
Thank you!
So I apply the following integral from 0 to 2π:
W=∫τ0 sin(ωt)dθ
Then :
dθ/2π = dt/T (T:=total time=2π/ω) ⇒ dθ=ω dt
⇒ W = ∫τ0 sin(ωt)/ω dt = -τ0 cos(ωt)/(ω^2)
Evaluating the integral from 0 to 2π gives 0, again. Or should I integrate from 0 to π for the up-down movement?
Thanks...
Homework Statement
In bicycling, each foot pushes on the pedal for half a rotation of the pedal shaft; that foot then rests and the other foot takes over. During each half-cycle, the torque resulting from the force of the active foot is given approximately by τ = τ0 sin ωt, where τ0 is the...