Oh whoops. The normal would be cosθ*mg and the downward force would be sinθ*mg. My mistake. However mass still cancels out.
Is it possible in some cases for additional mass to cause the coefficient of rolling resistance to be lower or higher?
The situation is the object starts on and rolls down a ramp about 1m high before gliding to a stop. Sorry for not specifying. I say that (ignoring air resistance) they would travel the same distance because:
They would have the same speed at the end of the ramp because (θ here is angle above...
He says that it isn't really rolling resistance because the skate board has bearings which involve a lot more forces than just a ball rolling. The way I see it the resistance is still proportional to mass so the masses would still cancel out w/o air resistance yes?
I've been arguing with my physics teacher about why the deacceleration of a person on a skateboard or bicycle that is gliding along the ground (without pedaling or pushing) is dependent on the mass of the person riding it (The higher mass person goes further). I say that it is solely due to...