Roots of linear sum of Fibonacci polynomials

AI Thread Summary
The discussion focuses on finding complex numbers x for which the equation Gn = fn-1(x) - 2fn(x) + fn+1(x) = 0 holds, where fn represents Fibonacci polynomials. The problem is reformulated recursively, leading to a characteristic equation whose roots inform the solutions for Gn. Observations indicate that the product of the roots consistently equals 2, and the sum of the roots also appears to equal 2, suggesting a pattern across different polynomial orders. Additionally, the real parts of the solutions are noted to be greater than zero, raising questions about the underlying reasons for this behavior. The conversation invites further exploration and insights into the properties of these polynomial roots.
ekkilop
Messages
29
Reaction score
0
For what complex numbers, x, is

Gn = fn-1(x) - 2fn(x) + fn+1(x) = 0

where the terms are consecutive Fibonacci polynomials?

Here's what I know:

1) Each individual polynomial, fm, has roots x=2icos(kπ/m), k=1,...,m-1.

2) The problem can be rewritten recursively as
Gn+2 = xGn+1 + Gn,
G1 = x-2,
G2 = x2 - 2x + 2
with characteristic equation Y2 - xY - 1.
If a and b are the roots of the characteristic equation, then
Gn = an + bn - 2(an - bn)/(a-b)
Choosing x=-2icosh(z) is an option that leads to an expression in terms of cosh(nx), sinh(nx) and sinh(x) but it doesn't get me any further.

Has anyone got an idea on an alternative approach to this problem?
Does anyone know of previous studies of this type of problem?

Thank you
 
Mathematics news on Phys.org
Some approach to guess solutions:

G1 has a single solution ##x=2##
G2 has two solutions ##x=1\pm i##
##G_3 = x^3-2x^2+3x-2## has three solutions ##x=1##, ##x=\frac{1}{2}(1\pm i\sqrt{7})##
##G_4 = x^4-2x^3+4x^2-4x+2## has four solutions ##x=\frac{1}{2}(1\pm i)-\sqrt{-1\mp \frac{i}{2}}## and ##x=\frac{1}{2}(1\pm i)+\sqrt{-1\mp \frac{i}{2}}##
The product of all solutions is 2 in all tested cases, and looking at the recursive definition and the first expressions I think this will be true for all n.

G_5 gives an interesting graph for the roots. Looks a bit like a christmas tree.
Same thing for G_6, but without simplification the expression is quite long.
 
Last edited:
Thanks for your reply!

Interesting observations. Yes, you're right! The product of the solutions will be 2 since G can be written as the characteristic polynomial of a matrix with determinant 2. Since the solutions come in complex conjugated pairs this suggests some pretty strict bounds.

The solutions also add up to 2 as it seems.

Have you got any clues to why the real part of the solutions are larger than zero?
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top