Maaneli
- 520
- 0
Demystifier said:Good! Because the covariant BM I am talking about depends only on the special relativistic metrical structure (except, of course, for the initial conditions)
Well I'm not so sure that it depends only on the special relativistic metrical structure. You have to use a foliation-like structure, namely, a synchronization parameter, to preserve the Lorentz covariance of the particle dynamics. And this synchronization parameter is something additional to the SR metrical structure, rather than something naturally implied by the SR metrical structure.
Demystifier said:... and can be written in a coordinate-free formulation. (If you want me to explicitly write it this way, I will do it for you after you write for me the nonrelativistic BM in 3-space-coordinate-free formulation.)
Unless you have some specific point to make (in which case, please just be explicit about it), I don't understand why you're asking me to write down said nonrelaivistic deBB formulation. The discussion here is about relativistic deBB theories. And I am not the one claiming to have a formulation of deBB theory which is compatible with SR. I am simply pointing out a condition that I think any such alleged theory should satisfy. Namely, I share the view of Maudlin that
A theory is compatible with Relativity if it can be formulated without ascribing to space-time any more or different intrinsic structure than the (special or general) relativistic metric.
On the other hand, you have a different view, in which you reject the idea of using only the intrinsic structure of the (special or general) relativistic metric, in order to claim that a (deBB) theory is compatible with Relativity. And you claim to have a covariant deBB theory which you say you can write in a coordinate-free formulation, and which thus shares the advantages of a coordinate-free formulation of SR (as characterized by Maudlin). Fine. Then show us how you do it, and show us that it is consistent with general covariance. That, I think, would significantly help the plausibility of your theory.
Demystifier said:
Thanks, that's what I thought it meant. And in that case, I would argue that, contrary to your summary point #2 in your post #83, a theory which is 'causally Lorentz invariant' does indeed treat space and time on equal footing. An example of such a theory is this:
Two Arrows of Time in Nonlocal Particle Dynamics
Authors: Roderich Tumulka
http://lanl.arxiv.org/abs/quant-ph/0210207
Demystifier said:Being natural or not, I claim that it is possible.
Yes, but lots of things are possible in physics. What's important, IMHO, is how plausibly you can motivate the reasons for retaining symmetry Lorentz invariance.
Last edited:
The ANALOGY!