One of the problems with CADO, is that it tries to do too much. I'm going by the description of how the frame is set up, rather than the detailed mathematics, which I am assuming for the time being are done correctly.
The problem is that if you have an observer who undergoes velocity changes, lines of constant time originating at different points on the observers worldlines will cross. This has a number of unpleasant consequences.
The general approach to this problem in physics is to say that the extent of the coordinate system of an accelerating observer is limited in its size, to the regions where the coordinate lines don't cross. (I'm not quite sure what the mathemeticans do, if they do the same thing or not, but I can describe what physicists do).
Here's a longish quote from MTW on the issue:
MTW said:
Constraints on the size onf an accerlated frame
IT is very easy to put together the words "the coordinate system of an accelerated observer", but it is much harder to find a concept these words might refer to. The most useful first remark one can make about these words is that, if taken seriously, they are self-contradictory.
...
"Difficulties also occur when one considers an observer who begins at rest in one frame, is accelerated for a time, and maintains thereafter a constant velocity, at rest in some other inertial coodrinate system. Do his motions define in any natural way a coordinate system? Then this coordinate system (1) should be the inertial frame (t,x) for times t<0 in which he was at rest in that other frame and (2) should be the other inertial frame (t',x') for times t' > T in which he was at rest in the other frame.
[ed-small notational notiational differences from the original here].
Evidently some further thinking would be required to decide how to define the coordinates in the regions not defined [ed t<0 or t>0]
More serious, however, is the fact that these two conditions are inconsistent for a region of space-time that satissfies simultaneously t<0 and t'>T.
The reason for the inconsistency is that a coordinate system (at least in physics) is supposed to assign only one value of (time, position) to an object. The hybrid coordinate system will assign two different values of time and position to the same event in space-time. This is more obvious in the picture that's included in the text.
Assuming that CADO does the math properly, it will run into the same fundamental problem. It will be assigning one event in space-time two different time coordinates (and correspondingly, too different locations to go with the differing times). This is bad behavior for a coordinate system, and the usual solution is to restrict the size of "the" coordinate system of an accelerated observer. If you have to use a coordinate system that covers all of space-time, you use some different coordinate system - there are various possibilities, in GR coordinates are arbitrary so you aren't required to specify an observer to specify a coordinate system.
Though there is one other possibiltiy worth mentioning. One could resolve the inconsistency by "throwing out" one set of coordinates, by preferring one observer over the other, thus introducing a preferred observer. But this isn't within the spirit of relativity.
So to sum up:1) Any cado-like approach must either prefer one of the two observers over the other (i.e. when the worldlines cross, it throws out the inconsistent coordinates) or it must assign the same event in space-time two different time coordinates.
2) the issue of setting up coordinates for an accelerating observer is discussed in the literature and textbooks - and the standard textbook result requires one to limit the size of the coordinate system to insure that only one pair of coordinates is assigned to a point, so that it does not given two different coordinates.
3) restricting the size of the coordinate system in this manner avoid the pathologies of clocks running backwards - and a few other pathologies (like singularities in the resulting metric).
Since one _can_ do physics without coordinates, the fact that one coordinate system can't have all the features one really would want it to have everywhere in space-time isn't a problem. In fact, that's one of the reasons that GR was developed - because it isn't possible to have one ideal coordinate system that has all the properties one would like, it becomes worthwhile to go through the extra effort to learn how to do physics in arbitrary coordinates.