Defining Vector: Beyond Schutz's Treatment in G. Relativity

  • Thread starter Thread starter schwarzschild
  • Start date Start date
  • Tags Tags
    Vector
schwarzschild
Messages
14
Reaction score
1
In Schutz's treatment of general relativity he defines a one-form as a function which maps a vector to a real number, and then later defines a vector as a linear function that maps one-forms into the reals. So the definitions seem to be circular - is there another way we can define a vector?
 
Physics news on Phys.org
If V is a finite-dimensional vector space over R (the real numbers), it's dual space V* is defined as the set of linear functions from V into R. Since V* is also a finite-dimensional vector space, we can use the same definition to construct its dual space V**. What you're describing is the definition of V**, not V, so there's nothing circular about it.

Note that V is isomorphic to V**. Just define f:V→V** by f(v)v*=v*v for all v* in V*. This f is an isomorphism, and it's the reason why you can think of V** as "the same thing" as V.

In general relativity, V is the tangent space of spacetime M at some point p in M. So there's a different V for each p. In SR, we have the option to instead take spacetime M to be a vector space, and then there's no need to talk about tangent spaces.

One way to define the tangent space: Let C be the set of smooth functions from M into R. Define V to be the set of linear functions v:C→R such that v(fg)=v(f)g(p)+f(p)v(g) for all f,g in C. Define a vector space structure on V by (u+v)(f)=uf+vf and (av)f=a(vf). Each coordinate system defines a basis for this vector space. The basis vectors are the partial derivative operators defined this way:

Fredrik said:
If M is a manifold, U is an open subset of M, p is a point in U, and x:U\rightarrow \mathbb{R}^n is a coordinate system, then the partial derivative operators

\frac{\partial}{\partial x^\mu}\bigg|_p

are basis vectors of the tangent space TpM of M at p.

These operators are defined by their action on functions f:M\rightarrow\mathbb{R}.

\frac{\partial}{\partial x^\mu}\bigg|_p f=(f\circ x^{-1}),_\mu(x(p))

where ,_\mu denotes the partial derivate of the function, with respect to the \muth variable.
(Edit: I should have said smooth functions.)

The proof of that involves a trick that you can find in Wald's GR book or Isham's differential geometry book, if you're interested.

Another option is discussed here. The vector spaces defined by these two definitions are isomorphic, so it doesn't matter which one of them we think of as "the" tangent space at p.

One more detail that may be of interest to you:
Fredrik said:
If an inner product is defined on V, you can use it to define an isomorphism between V and V*. Just let x* be the map y\mapsto \langle x,y\rangle. Now the map x\mapsto x^* is an isomorphism.
It actually doesn't have to be an inner product. Any symmetric non-degenerate bilinear form (like the metric tensor) will do.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top