Passionflower said:
I am not sure how you wish to support this statement DaleSpam.
The ratio between the relativistic Doppler shift of an approaching and retreating object with the same speed is exactly 1. So how could you argue that the relativistic Doppler shift includes a time dilation part that only goes one way but is small compared to the classical Doppler shift?
That relativistic time dilation plays no role in the relativistic Doppler factor is clear after we consider the relationship between the square of the relativistic Doppler factor and the change in radar roundtrip time for increasing or decreasing distances, the clock speed of the ship containing the mirror plays absolutely no role in this.
Suppose something is moving away from you at 0.6c, and sending out light signals once every 20 seconds according to its own clock. Then if there is no time dilation, then it sends out signals once every 20 seconds in your frame too, and during this time it has moved a distance of 0.6*20 = 12 light-seconds further away from you, so if we still assume the light signals travel at c in your frame, you'll only receive signals from the object once every 20+12=32 seconds. On the other hand, if it's moving towards you at 0.6c and sending out signals once every 20 seconds with no time dilation, then it will be 12 light-seconds closer to you each time it sends a signal, so the you'll receive signals from the object once every 20-12=8 seconds. And 1/32 and 1/8 are the numbers you get if you use the
classical Doppler shift formula f = \frac{v + v_r}{v + v_s} f_0, assuming that the receiver is in the frame where light waves move at c (the rest frame of the
luminiferous aether) so v
r=0, the velocity of waves is v=c, the frequency f
0 at which the waves are being sent is 1/20, and the velocity of the source is v
s=-0.6c or v
s=0.6c.
Now see what happens if we include relativistic time dilation. In this case, if the object is moving away at 0.6c and sending out signals once every 20 seconds according to its own clock, then its clock is slowed down by a factor of 1.25 in your frame, so in your frame it only sends out signals once every 20*1.25 = 25 seconds. So, if it's moving at 0.6c it will have moved further away from you by a distance of 25*0.6 = 15 light-seconds each time it sends a signal. So, you will only receive signals once every 25+15=40 seconds. On the other hand, if it's moving towards you at 0.6c, it'll be 15 light-seconds closer each time it sends a signal, so you'll receive a signal once every 25-15=10 seconds. 1/40 and 1/10 are the numbers you get if you use the
relativistic Doppler shift formula f_{received} = f_{source}\sqrt{\frac{1 + v/c}{1 - v/c}} with v=-0.6c or v=0.6c respectively, with f
source = 1/20. So, you can see that time dilation does figure into the relativistic Doppler shift formula, and that the relativistic blueshift of 1/10 is equal to 8/10 times the non-relativistic blueshift of 1/8, and likewise the relativistic redshift of 1/40 is equal to 8/10 times the non-relativistic redshift of 1/32.