Natural Vibration of Beam - Algebraic Query

AI Thread Summary
The discussion revolves around the derivation of a quadratic characteristic equation from a matrix equation related to the natural vibration of a beam. The equation is set to zero to find the determinant, leading to a quadratic in terms of ##\lambda##, defined as ##\lambda=\frac{\rho A L^4}{EI} \omega^2##. Participants debate the dimensionality of ##\lambda##, concluding it should be dimensionless, while questioning the definition of ##\rho## as "mass density per unit length." Clarifications are made regarding the nature of angular frequency and the confusion surrounding the terminology used in the source material. The conversation highlights the importance of precise definitions in engineering contexts.
bugatti79
Messages
786
Reaction score
4
Folks,

Just wondering what the author is doing here, given

##\displaystyle \left (\frac{2EI}{L^3} \begin {bmatrix} 6&3L\\3L&2L^2 \end {bmatrix} -\omega^2 \frac{\rho A L}{420} \begin {bmatrix} 156&22L\\22L&4L^2 \end{bmatrix} \begin {bmatrix} W\\ \theta \end {bmatrix} \right )=\begin {bmatrix} 0\\ 0 \end {bmatrix}##

He proceeds to set the determinant of the matrix above to 0 to obtain a quadratic characteristic equation in ##\omega^2##

The equation being

##15120-1224 \lambda + \lambda^2=0##, where ##\displaystyle \lambda=\frac{\rho A L^4}{EI} \omega^2##

Using wolfram http://www.wolframalpha.com/input/?...mega^2+p+A+l)/420)*{{156,22l},{22l,4l^2}})+=0 (Z=EI)

I don't see how he arrives at this quadratic expression or how he determined ##\lambda## ...thanks
 
Mathematics news on Phys.org
bugatti79 said:
Folks,

Just wondering what the author is doing here, given

##\displaystyle \left (\frac{2EI}{L^3} \begin {bmatrix} 6&3L\\3L&2L^2 \end {bmatrix} -\omega^2 \frac{\rho A L}{420} \begin {bmatrix} 156&22L\\22L&4L^2 \end{bmatrix} \begin {bmatrix} W\\ \theta \end {bmatrix} \right )=\begin {bmatrix} 0\\ 0 \end {bmatrix}##

He proceeds to set the determinant of the matrix above to 0 to obtain a quadratic characteristic equation in ##\omega^2##

The equation being

##15120-1224 \lambda + \lambda^2=0##, where ##\displaystyle \lambda=\frac{\rho A L^4}{EI} \omega^2##

Using wolfram http://www.wolframalpha.com/input/?...mega^2+p+A+l)/420)*{{156,22l},{22l,4l^2}})+=0 (Z=EI)

I don't see how he arrives at this quadratic expression or how he determined ##\lambda## ...thanks

Ah, I have it. The first equation in the alternative form in wolfram gives the clue.
 
bugatti79 said:
Folks,

Just wondering what the author is doing here, given

##\displaystyle \left (\frac{2EI}{L^3} \begin {bmatrix} 6&3L\\3L&2L^2 \end {bmatrix} -\omega^2 \frac{\rho A L}{420} \begin {bmatrix} 156&22L\\22L&4L^2 \end{bmatrix} \begin {bmatrix} W\\ \theta \end {bmatrix} \right )=\begin {bmatrix} 0\\ 0 \end {bmatrix}##

He proceeds to set the determinant of the matrix above to 0 to obtain a quadratic characteristic equation in ##\omega^2##

The equation being

##15120-1224 \lambda + \lambda^2=0##, where ##\displaystyle \lambda=\frac{\rho A L^4}{EI} \omega^2##

Using wolfram http://www.wolframalpha.com/input/?...mega^2+p+A+l)/420)*{{156,22l},{22l,4l^2}})+=0 (Z=EI)

I don't see how he arrives at this quadratic expression or how he determined ##\lambda## ...thanks

Why do we have ##\displaystyle \lambda=\frac{\rho A L^4}{EI} \omega^2##? Why isn't it some other combination of units? In other words, what should the units of lambda be?

If we do a units balance on this to which I calculate

##\displaystyle\frac{\frac{kg}{m^4}m^2m^4 }{\frac{\frac{kgm}{s^2}}{m^2}m^4}\frac{rad^2}{s^2}=\frac{rad^2}{m}## where ##\rho## is the mass density per metre...thanks
 
bugatti79 said:
Why do we have ##\displaystyle \lambda=\frac{\rho A L^4}{EI} \omega^2##? Why isn't it some other combination of units? In other words, what should the units of lambda be?

If we do a units balance on this to which I calculate

##\displaystyle\frac{\frac{kg}{m^4}m^2m^4 }{\frac{\frac{kgm}{s^2}}{m^2}m^4}\frac{rad^2}{s^2}=\frac{rad^2}{m}## where ##\rho## is the mass density per metre...thanks

##\lambda## should be dimensionless. You can tell because the quadratic equation involves different powers of ##\lambda##, so it can't have dimensions.

Are you sure that ##\rho## is a linear mass density? It looks like it should be kg/m3.

Also, keep in mind that "radians" are dimensionless units (they have dimensions of length/length).
 
Mute said:
##\lambda## should be dimensionless. You can tell because the quadratic equation involves different powers of ##\lambda##, so it can't have dimensions.

Not sure I understand this. For example on a slight tangent of topic if we consider a 1 dimensional bar element whose interpolation function is a quadratic in x which is the distance along the bar in metres...

##u_h^e(x)=c_1+c_2x+c_3x^2## This is not dimensionless...


Mute said:
Are you sure that ##\rho## is a linear mass density? It looks like it should be kg/m3.

Also, keep in mind that "radians" are dimensionless units (they have dimensions of length/length).

Well this problem stems from the Euler-Bernoulli Beam Theory and the book states that ##\rho## is "mass density per unit length" so isn't that kg.m^3/m=kg/m^4?...
 
bugatti79 said:
Not sure I understand this. For example on a slight tangent of topic if we consider a 1 dimensional bar element whose interpolation function is a quadratic in x which is the distance along the bar in metres...

##u_h^e(x)=c_1+c_2x+c_3x^2## This is not dimensionless...

Ah, I think I know what you mean. The LHS of above is not 0 so dimensions are allowed.

Its when an equation is set to 0 with different powers of ##\lambda## like you say, that they must be dimensionless, right...?

thanks
 
Mute said:
Are you sure that ##\rho## is a linear mass density? It looks like it should be kg/m3.
Agreed, since the mass of the beam appears to be ##\rho A L## in your matrix equation.

Also, keep in mind that "radians" are dimensionless units (they have dimensions of length/length).

##\omega## is the angular frequency in radians/secons, not an angle in radians.
 
bugatti79 said:
Not sure I understand this. For example on a slight tangent of topic if we consider a 1 dimensional bar element whose interpolation function is a quadratic in x which is the distance along the bar in metres...

##u_h^e(x)=c_1+c_2x+c_3x^2## This is not dimensionless...

The difference with this example is that your coefficients ##c_i## each have different units to compensate for the units of the different powers of x.

In the quadratic for ##\lambda##, you assigned no numbers to the numerical coefficients, and since you were following a book that appears to have left all dimensionful quantities as variables, I assumed those coefficients were dimensionless. Are the coefficients supposed to have units?

Well this problem stems from the Euler-Bernoulli Beam Theory and the book states that ##\rho## is "mass density per unit length" so isn't that kg.m^3/m=kg/m^4?...

The book says that word-for-word? That is a very confusing statement. One usually says "mass per unit length" or "mass per unit volume", but I have not heard "mass density per unit length". I think it must be a typo or something. Even if we were to take that at face value, is the density a linear density or a volumetric density?


AlephZero said:
##\omega## is the angular frequency in radians/secons, not an angle in radians.

Yes, I was not referring to the angular frequency as a whole, only the factor of radians that remained in bugatti79's calculation, so I mentioned that radians are actually dimensionless.
 
Mute said:
The difference with this example is that your coefficients ##c_i## each have different units to compensate for the units of the different powers of x.

In the quadratic for ##\lambda##, you assigned no numbers to the numerical coefficients, and since you were following a book that appears to have left all dimensionful quantities as variables, I assumed those coefficients were dimensionless. Are the coefficients supposed to have units?
Not sure I understand what you are saying about the numerical coefficients? The coefficients of ##\lambda## and ##\lambda^2## are -1224 and 1 respectively, right?


Mute said:
The book says that word-for-word? That is a very confusing statement. One usually says "mass per unit length" or "mass per unit volume", but I have not heard "mass density per unit length". I think it must be a typo or something. Even if we were to take that at face value, is the density a linear density or a volumetric density?

Yes. That is all the book says as above. So perhaps it is a typo...

I have never heard of a volumetric density...
 

Similar threads

Back
Top