Transforming 3rd order D.EQ into 1st order

  • Thread starter Thread starter hils0005
  • Start date Start date
Click For Summary
The discussion focuses on transforming a third-order differential equation into a system of first-order equations. The original equation is inhomogeneous, which affects the expected form of the final system. Participants clarify that the system should consist of three linear ordinary differential equations involving the variables y, A, and B, without needing to express A as y. There is a correction regarding the coefficients in the equations, specifically that B should have a positive coefficient. The final system is presented with the appropriate adjustments for the inhomogeneous term.
hils0005
Messages
61
Reaction score
0
[SOLVED] Transforming 3rd order D.EQ into 1st order

Homework Statement


Transform the following diff eq into a system of first order diff eqs.

2y''' - 6y'' - y' + 3y =t^4cos(2t)


The Attempt at a Solution


heres what I've done so far:
y =A A'=y'
y' =B B'=y''
y'' =C C'=y'''=6y'' + y' - 3y + t^4cos(2t)

C'=-3A + B + 6C +t^4cos(2t)
B'= C
A'= B

I don't know if this is correct because the initial D.Eq is not homogenous, don't know what to do with the t^4cos(2t)
 
Physics news on Phys.org
Well, of course the system of 1st order ODE won't be homogenous. You started out with an inhomogenous equation. Why should you expect the final answer to be homogenous? You don't need C at all. You only need to express as a system of 3 linear ODE with variables y,A,B. You don't have to let A=y. Just use y itself. Once you've done that you can simply just add in the t^4cos2t as a column vector to the right of the RHS.

Here's what I have:

y'=A
A'=B
\frac{d}{dt} \left(\begin{array}{cc}y\\A\\B\end{array}\right) = \left(\begin{array}{ccc}0&1&0\\0&0&1\\-\frac{3}{2}&\frac{1}{2}&-3\end{array}\right)\left(\begin{array}{cc}y\\A\\B\end{array}\right) + \left(\begin{array}{cc}0\\0\\t^4cos2t\end{array}\right)

Are you required to solve this?
 
No just need to set up the equations
so the equation would look like:
y'=A
A'=B
B'=(-3y+t^4cos2t) + (A+t^4cos2t) - (6B+t^4cos2t)

not sure why you multiplied B' by 1/2, and also how did you come up with -3B not a positive 3B??
 
I see I forgot the coefficent 2 before y''', still can't see how you get -3B and not positive 3B
 
your solution does look correct.
If you actually wanted to solve this, you would probably first solve the homogenous version of the equation, then using that result... essentially guess solutions to the inhomogenous equation (the actual equation).
 
hils0005 said:
I see I forgot the coefficent 2 before y''', still can't see how you get -3B and not positive 3B
You're right about that; it should be 3B, not -3B.

\frac{d}{dt} \left(\begin{array}{cc}y\\A\\B\end{array}\right) = \left(\begin{array}{ccc}0&1&0\\0&0&1\\-\frac{3}{2}&\frac{1}{2}&3\end{array}\right)\left(\begin{array}{cc}y\\A\\B\end{array}\right) + \left(\begin{array}{cc}0\\0\\t^4cos2t\end{array}\right)
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K