How is the Fermi coupling constant related to the muon decay lifetime?

Orion1
Messages
961
Reaction score
3

I am inquiring if anyone here is qualified to numerically calculate the following equation:

Fermi coupling constant and Muon decay lifetime: (ref. 1)
\frac{G_F}{(\hbar c)^3} = \sqrt{\frac{192 \pi^3 \hbar}{(m_{\mu} c^2)^5 \tau_{\mu}}

Muon decay lifetime: (ref. 2)
\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}

According to ref. 3, the Fermi coupling constant is:
\frac{G_F}{(\hbar c)^3} = 1.166391 \cdot 10^{- 5} \; \text{GeV}^{- 2}

Muon decay width and lifetime: ?
\Gamma_{\mu} = \frac{1}{\tau_{\mu}}

However, according to ref. 2, the muon decay width is:
\Gamma_{\mu} = \frac{G_F^2 m_\mu^5}{192\pi^3} I \left(\frac{m_e^2}{m_\mu^2}\right)

I(x)=1-8x+12x^2ln\left(\frac{1}{x}\right)+8x^3-x^4

Also, Wikipedia ref. 2 does not explain what the I(x) function is, or what x represents.

I presume that:
I(x) = I \left(\frac{m_e^2}{m_\mu^2}\right) \; \; \; x = \frac{m_e^2}{m_\mu^2}

Muon decay width: (ref. 4)
\Gamma_{\mu} = 3 \cdot 10^{- 19} \; \text{GeV}

key:
G_F - Fermi coupling constant
m_{e} - electron mass
m_{\mu} - muon mass
[/Color]
Reference:
http://www.physics.union.edu/images/summer06/pochedley.pdf"
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
http://books.google.com/books?id=-S...=M5VYRBiseTeT87rr7tjglfO6AAo&hl=en#PPA149,M1"
 
Last edited by a moderator:
Physics news on Phys.org
I did muon calculation last week infact, however we did fermi contact approximation and assumed \frac{m_e^2}{m_\mu^2} << 1.

i.e. we assued I(\frac{m_e^2}{m_\mu^2}) = 1



Just use mass of muon= m_{\mu} = 0.105658369 \text{GeV} and
G_F = 1.166 \cdot 10^{-5} \text{GeV} ^{-1}

Then convert the witdh \Gamma into S.I units, i.e Joule

Then, at last: \tau = \hbar / \Gamma

Good luck
 
malawi_glenn said:
I did muon calculation last week infact, however we did fermi contact approximation and assumed \frac{m_e^2}{m_\mu^2} << 1
It is easy to plug in the values and check that the more refined calculation provides a very small correction. Besides, wikipedia does give the appropriate reference...
 
yes, with all that, I obtained lifetime = 2.1888 * 10^-6 s
 

Thanks malawi glenn and humanino for your collaboration!

x = \frac{m_e^2}{m_\mu^2} << 1

Dimensionless x value obtained:
x = \frac{m_e^2}{m_\mu^2} = \frac{(0.00051099891844 \; \text{GeV})^2}{(0.105658369 \; \text{GeV})^2} = 2.33901042277445 \cdot 10^{- 5} \ll 1

\boxed{x = 2.33901042277445 \cdot 10^{- 5}}

I(x) = 1 - 8x + 12x^2 ln \left( \frac{1}{x} \right)+ 8 x^3 - x^4
I \left( \frac{m_e^2}{m_\mu^2} \right) < 1
\boxed{I \left( \frac{m_e^2}{m_\mu^2} \right) = 0.999812949171918}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Electron"
http://en.wikipedia.org/wiki/Muon"
 
Last edited by a moderator:

Unit key:
\Gamma_{\mu} = \text{GeV} - Muon decay width
m_{e} = \text{GeV} - Electron mass
m_{\mu} = \text{GeV} - Muon mass
\tau_{\mu} = \text{s} - Muon lifetime

Wikipedia Muon lifetime:
\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}

Muon decay width:
\Gamma_{\mu} = \frac{\hbar}{10^{9} e \tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} I \left( \frac{m_e^2}{m_\mu^2} \right)
e - electron charge magnitude

Muon decay width with leptonic correction term:
\boxed{\Gamma_{\mu} = 3.00867837568648 \cdot 10^{- 19} \; \text{GeV}}

Fermi coupling constant:
\boxed{G_F = \sqrt{ \frac{192 \pi^3 \hbar}{10^{9} e m_{\mu}^5 \tau_{\mu} I \left( \frac{m_e^2}{m_\mu^2} \right) }}}

Solution for Fermi coupling constant with Wikipedia Electron and Muon mass and Muon lifetime and leptonic correction term:
\boxed{G_F = 1.16391365532758 \cdot 10^{- 5} \; \text{GeV}^{- 2}}

Wikipedia Fermi coupling constant:
\boxed{G_F = 1.166391 \cdot 10^{- 5} \; \text{GeV}^{- 2}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
 
Last edited by a moderator:

Muon lifetime:
\boxed{\tau_{\mu} = \frac{192 \pi^3 \hbar}{10^{9} e G_F^2 m_{\mu}^5 I \left( \frac{m_e^2}{m_\mu^2} \right)}}

\boxed{\tau_{\mu} = 2.19703403501795 \cdot 10^{- 6} \; \text{s}}

Wikipedia Muon lifetime:
\boxed{\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
 
Last edited by a moderator:
Wery good! Now do the contribution from second order feynman amplitudes =D
 

\Gamma_{\mu} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} I \left( \frac{m_e^2}{m_\mu^2} \right) = \alpha_w^2 \frac{m_{\mu}^5}{m_W^4}

key:
\alpha_w - electroweak fine structure constant
m_W = 80.398 \; \text{GeV} - W Boson mass

Electroweak fine structure constant:
\boxed{\alpha_w = G_F m_W^2 \sqrt{\frac{I \left( \frac{m_e^2}{m_\mu^2} \right)}{192 \pi^3}}}

\boxed{\alpha_w = 9.77054112064435 \cdot 10^{- 4}}

key:
\alpha_s = 1 - strong fine structure constant
m_p = 0.9382720298 \; \text{GeV} - Proton mass
m_X - X Boson mass
\Gamma_p - Proton decay width
\tau_p = 3.1536 \cdot 10^{42} \; \text{s} \; \; \; (10^{35} \; \text{years}) - Super-Kamiokande Proton decay lifetime

\Gamma_p = \frac{\hbar}{10^{9} e \tau_p} = \alpha_s^2 \frac{m_p^5}{m_X^4}

\boxed{\Gamma_p = 2.08717693773387 \cdot 10^{- 67} \; \text{GeV}}

X Boson mass:
\boxed{m_X = \left( \frac{10^9 e t_p m_p^5 \alpha_s^2}{\hbar} \right)^{\frac{1}{4}}}

\boxed{m_X = 4.32037202924731 \cdot 10^{16} \; \text{GeV}}
[/Color]
Reference:
http://books.google.com/books?id=-S...=M5VYRBiseTeT87rr7tjglfO6AAo&hl=en#PPA149,M1"
http://en.wikipedia.org/wiki/Proton_decay"
http://en.wikipedia.org/wiki/W_and_Z_bosons"
http://en.wikipedia.org/wiki/X_and_Y_bosons"
http://en.wikipedia.org/wiki/Electronuclear_force"
http://en.wikipedia.org/wiki/Grand_unification_theory"
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/unify.html#c1"

malawi_glenn said:
It is a strong interaction!
 
Last edited by a moderator:
  • #10
What are you doing?

"It is a strong interaction" is my signature for all my posts:P
 

Similar threads

Back
Top