Blood pressure and atmospheric pressure

Click For Summary
SUMMARY

The discussion centers on the relationship between atmospheric pressure and human blood pressure, highlighting that normal atmospheric pressure is 760 mmHg while normal blood pressure is approximately 120/80 mmHg. It is established that the human body, despite being subject to higher atmospheric pressure, does not collapse due to the structural integrity of blood vessels and the balance of internal and external pressures. The conversation also clarifies that blood pressure measurements are relative, and the actual pressure difference does not result in a sensation of being crushed. The mechanical properties of blood vessels allow them to withstand these pressures without significant deformation.

PREREQUISITES
  • Understanding of blood pressure measurement (systolic and diastolic)
  • Basic knowledge of atmospheric pressure (760 mmHg)
  • Familiarity with the mechanical properties of biological tissues
  • Concept of pressure gradients in gas exchange
NEXT STEPS
  • Research the mechanical properties of blood vessels and their response to pressure
  • Study the physiological mechanisms of blood circulation and pressure regulation
  • Explore the effects of hypertension on blood vessel integrity
  • Investigate the role of pressure gradients in respiratory gas exchange
USEFUL FOR

Medical students, healthcare professionals, physiologists, and anyone interested in understanding the dynamics of blood pressure and its interaction with atmospheric pressure.

ananthu
Messages
105
Reaction score
1
The normal atmospheric pressure is 760 mm of Hg. But the normal human blood pressure is around 120/80 mm only. In that case how equilibrium of our body is achieved? For any vessel to retain its original shape its inside pressure and outside pressure should remain equal. If the outside pressure exceeds the vessel will be crushed inward and if the inside one exceeds it will blow up. In the case of our body, assuming it as vessel, how the pressure of atmosphere which is nearly six times higher than the blood pressure inside, could not crush the body inward?
Are there any other inward forces make up for the rest in order to counteract the atmospheric pressure? Also why do we not feel the atmospheric pressure acting on our body surface at all?
 
Biology news on Phys.org
The blood pressure measurments are "relative pressure", meaning the figures that you state are above atmospheric pressure.
 
Thank you for your reply. But I couldn't follow what you exactly mean. Will you please elaborate?
 
760+120=880

Think about it: the measurement is taken with a pressure measuring device open to atmosphere.
 
Last edited:
Does it mean that the actual blood pressure is 880 mm of Hg? In that case it means the actual blood pressure is 120 mm higher than that of the outside pressure.If so how balance is achieved? If there is no balancing mechanism, I should feel as if my blood is pushing my body from inside!
 
Mechanical strength of blood vessels.

Not everything gets crushed because of a pressure difference. Think of, a can of fizzy drink, a high pressure hose pipe, gas/water pipes, an aeroplane. All are pressure containers.

So just like a waterpipe with high pressure water rushing through it doesn't explode (usually) neither do blood vessels. Note that if blood pressure get's too high, your blood vessels can break.
 
120 mm is not a lot of pressure for a hose like your blood vessels to hold.
 
russ_watters said:
120 mm is not a lot of pressure for a hose like your blood vessels to hold.

That may seem true, but recall that hypertension starts around 140 mmHg: that's an increase of only 2% absolute pressure. (16% increase in gauge pressure, tho).
 
Thank you for all the replies. I am happy that my doubts and the chain of answers have led to a new realm of interesting details and facts which are seldom found in textbooks.
 
  • #10
ok, i guess its really2 fair explanation. but, if thts the case, when 1 person die, we must observe tht the body would shrink with 880 mmHg pressure. 880 is a huge pressure difference. if the difference is maintain to 120-80, meaning, our heart is just the elevation (pumpung power of only 120)...dont u guys think so?

I still damn impressed with the design of the heart to sustain pumping on average of 100000 times a day even with that 120 pressure ramp.
 
  • #11
Welcome to PF!

Pressurized and compressed are two different things. Our blood is pressurized, but is not noticeably compressed.
 
  • #12
ok, get the point. (correct me if its not allign with what u try to explain)..basically, after someone die, there is no more pressure generated from inside, that would definitely damage the body as pressure inside is not in equilibrium with pressure outside. however, due to the physical properties of human body which built from very minimal compressible substances, so tht, our body could still maintain its original state even without internal pressure generated from the blood circulation.is tht the point?
 
  • #13
From my understanding a pressure gradient is required for gas to exchange from one system to the next, such as from the atmosphere into our blood. The atmospheric pressure is not that high if you compare it to our circulatory pressure - atmospheric pressure is 14.69psi and our systolic blood pressure is 2.32psi. Our blood vessels are composed of soft and hard tissues that enable our circulatory system to with stand a certain amount of pressure from outside as well as from within. 14.69psi is a small amount of pressure - enough for gaceous exchange but not enough to crush a human body or a blood vessel. Consider that Oxygen has partial pressure of 0.21atm (160mmHg), which is necessary for Oxygen to enter the blood as our systolic blood pressure should be about 120mmHg. The atmospheric pressure of CO2 is less than 0.0397atm (30mmHg), which is also necessary for the CO2 to diffuse out of our blood and into the atmosphere. A fine balance indeed.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 5 ·
Replies
5
Views
20K
  • · Replies 8 ·
Replies
8
Views
8K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K