How to Obtain the Transition Probability Matrix in a Birth Death Markov Chain?

AI Thread Summary
To obtain the transition probability matrix in a birth-death Markov chain, one must utilize the infinitesimal generator matrix (Q), which is derived from the known birth and death rates. The transition probabilities can be calculated using the matrix exponential e^(Qt), which represents the probabilities of transitioning between states over time. It is essential that the resulting transition probability matrix is square, with all entries being probabilities that sum to one for each row. For further understanding, resources such as "Markov Chains" by Norris and discrete-time Markov chain explanations can provide additional insights. Mastering these concepts will facilitate the modeling of the ON-OFF sources effectively.
smoodliar
Messages
4
Reaction score
0
Hi

I am trying to model the behaviour of 2 independent ON-OFF sources. My state diagram is as follows

state 0 = both sources are OFF
state 1 = 1 of the sources are ON
state 2 = both sources are ON

The transition rates are given as

BIRTH RATE = lamda(i) = (N-I)*lamda
DEATH RATE = alpha(i) = i*alpha

So in my case N = 2.

I understand how to obtain the steady state distribution and the infinitesimal generation matrix. But I don't know how to obtain the transition probability matrix.

Reference taken from (see attached file):
netsys.kaist.ac.kr/~lectures/EE627_2009/material/EE627_1.ppt

Any help will be appreciated
 

Attachments

Physics news on Phys.org
smoodliar said:
Hi
I understand how to obtain the steady state distribution and the infinitesimal generation matrix. But I don't know how to obtain the transition probability matrix.

There are just two requirements for a square state transition probability matrix.

1. All cells must contain a probability

2. The sum of each row must equal unity.

The probability that the system stays in the same state can be non-zero.
 
Last edited:
If I understood correctly, you have a 3-state continuous-time Markov chain. You know the transition rates (birth/death rates) so you know the infinitesimal generator matrix (Q), which gives you the probabilities of a transition in a short time interval. I guess you are trying to find the transition probabilities P["State at time t" = j | "State at time 0" = i]. The matrix constructed by these probabilities is given by e^(Qt). (Matrix exponential). Check out the book Markov Chains by Norris, which explains the relation between the infinitesimal generator and the transition probability matrix in the first few pages of Chapter 2.

It might also help to look at the discrete-time version. I did some search on the web. I found this web site, http://www.utdallas.edu/~jjue/cs6352/markov/node3.html which explains the discrete-time version. In summary, if you had a discrete-time Markov chain, those birth/death rates would correspond to "single-step" transition probabilities. In order to find the transition probabilities from a state to another one within some time, say m, you would look for the "m-step transition matrix" which is equal to m-th power of the "single-step" transition probability matrix.

I guess the difference between the discrete-time and continuous-time version is that the "m-step transition probability matrix" is the solution of a difference equation in the discrete case, and it is the solution of a differential equation in the continuous case.

- http://www.utdallas.edu/~jjue/cs6352/markov/node3.html
- Markov Chains, by J.R. Norris
 
Last edited:
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top