An Easy Metric for Einstein Field Equations

edgepflow
Messages
688
Reaction score
1
So I am an engineering graduate trying to teach myself some general relativity.

I have tried to solve the Einstein Field equations for a wormhole metric and some others.

After pages and pages of calculating Christoffel Symbols, Riemann Tensors, Ricci Tensors and Scalars, and so on, I end up with a mess that is not correct.

Is there a simple metric(s) I could start with that is less messy?
 
Physics news on Phys.org
edgepflow said:
So I am an engineering graduate trying to teach myself some general relativity.

I have tried to solve the Einstein Field equations for a wormhole metric and some others.

After pages and pages of calculating Christoffel Symbols, Riemann Tensors, Ricci Tensors and Scalars, and so on, I end up with a mess that is not correct.

Is there a simple metric(s) I could start with that is less messy?

One of the easiest metrics to begin with is the spherically symmetric metric that leads to the Schwarzschild solution. Another relatively easy metric, but not quite as easy algebraically is the axi-symmetric metric that leads to the Weyl solution. As the previous post indicates, using computer algebra programs is a nice way to go. However, my experience is that there is some benefit to doing a few derivations out the long hard way. What you can learn is to see patterns in the symbols that allow cancellations and subsequently neat, pretty equations. I don't know if computer algebra programs are as adept at this as the human mind. Of course, I may be a little old fashioned that way... :).

Allan
 
Thank you for the posts.

I downloaded the links. I have heard of GRTensor for mathmaticia. Is there anything like this available for MathCAD?

Please help me check that I have some basics straight.

For a coordinate basis (t,u,v,w), the Ricci Scalar is:

R = g^tt Rtt + g^uu Ruu + g^vv Rvv + g^ww R ww

The Einstein Tensor is:

Gtt = Rtt - (1/2) R gtt
Guu = Ruu - (1/2) R guu
Gvv = Rvv - (1/2) R gvv
Gww = Rww - (1/2) R gww

With no other terms included in each term.

The Field equations are now:

Gtt = 8 Pi G Ttt
Guu = 8 Pi G Tuu
Gvv = 8 Pi G Tvv
Gww = 8 Pi G Tww

With no other terms for each coordinate.

Let me know if I have these basics straight.
 
Those equations look right for an orthogonal metric.

If you want to work out an earsy example by hand, try this

<br /> ds^2=-dt^2+a(t)(dx^2+dy^2+dz^2)<br />

0&lt;t&lt;\infty,\ \ \ -\infty&lt;x,y,z&lt;\infty<br />

which is a variant of the Robertson-Walker metric.

The Christoffel symbols are

<br /> {\Gamma^t}_{xx}={\Gamma^t}_{yy}={\Gamma^t}_{zz}= \frac{\dot{a}}{2},\ \ \ {\Gamma^t}_{tx}={\Gamma^t}_{ty}={\Gamma^t}_{tz}= \frac{\dot{a}}{2a}<br />

The Einstein tensor components are

<br /> G_{tt}=\frac{3\,{\left( \dot{a}\right) }^{2}}{4\,{a}^{2}},\ \ \ G_{xx}=G_{yy}=G_{zz}= \frac{\left( \dot{a}\right) ^{2}-4a\ddot{a}}{4a}<br />

You should get some symbolic math program to do this for you - I can recommend Maxima if you don't have Maple or Mathematica.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top