JJacquelin said:
Hi jackmell !
The relationship given in your first post :
exp(2*n*pi*i*p/q) = exp(-pi*i*p/q)
is not consistent with the exemple given in your second post :
exp(-14*n*pi*i/5) = exp(14*pi*i/5)
If the exemple is correct, then the first equation should be :
exp(n*pi*i*p/q) = exp(-pi*i*p/q)
Where is the mistake ?
Anyway, it seems rather easy to solve the problem :
if exp(2*n*pi*i*p/q) = exp(-pi*i*p/q) is correct then
exp(2*n*pi*i*p/q) = exp(-pi*i*p/q + 2*k*pi*i)
where k is any positive or negative integer.
2*n*pi*i*p/q = -pi*i*p/q + 2*k*pi*i
2*n = -1 + 2*k*q/p
Depending on p and q, there are some conditions for (-1 + 2*k*q/p) to be even. If these conditions are fullfiled, one can find the formula leading to couples (k, n).
. . . Jesus, then I'm no better then those in the homework forum I criticize for not being clear. Hope they don't see this. Ok, let me try to be precisely clear and I think from your work JJacquelin, I have found a solution to the problem!
I wish to determine for a particular starting branch of the function ##w=z^{r/s}(1-z)^{p/q}##, which branch I will land on when I make one complete revolution around the singular point ##z=1##. If I begin on the principal branch at say ##z=1/2##, then by analyzing the argument change of the function around this singular point, I arrive at the expression:
$$e^{p/q i(\pi+2n\pi)}=e^{p/qi(-\pi)}$$
or:
$$e^{2n\pi i p/q}=e^{-2\pi ip/q}$$
Now following what you said above:
$$e^{2n\pi i p/q}=e^{-2\pi ip/q+2k\pi i},\quad n=1,2,\cdots,q-1 \quad \text{and }k\in \mathbb{Z}$$
or:
$$2\pi i(np/q)=2\pi i(k-p/q)$$
$$ np=kq-p$$
$$ (n+1)=k(q/p)$$
and this is the critical point: Since I know beforehand that there can be only one solution to this problem, one n only, I can always let ##k=p## which means the ending branch will always be ##q-1## and this is consistent with the experimental results above as well as other specific cases I've analyzed: the ending branch was always the last one. And likely by a similar argument, characterize the branching geometry likewise around the origin thereby completely characterizing the analytic continuation of the beta function via the pochhammer contour for rational exponents in that thread I'm working on in the Topology forum. Really a beautiful problem in my opinion guys if anyone reading this is interested and just so you know, it's really a struggle for me and I appreciate the help. :)
Thanks a bunch JJacquelin!