Static friction does no work (energy is conserved)

Click For Summary
SUMMARY

The discussion centers on the concept of static friction and its relationship to work and energy conservation. It is established that static friction does no work in the ideal case where there is no relative motion between surfaces, as referenced in Chet Tipler's "Physics for Scientists and Engineers," 5th edition. However, participants argue that work can be frame-dependent and that real-world interactions may involve energy transfer, despite static friction being defined as non-dissipative. The conversation highlights the complexity of defining work in different reference frames and the implications of static friction in practical scenarios.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with the concept of work in physics
  • Knowledge of reference frames in mechanics
  • Basic principles of friction, particularly static friction
NEXT STEPS
  • Study the mathematical definition of work in physics, particularly in different reference frames
  • Explore the role of static friction in rolling motion, such as a ball rolling down an incline
  • Investigate the microscopic interactions at contact surfaces in tribology
  • Review advanced mechanics concepts related to energy transfer and conservation
USEFUL FOR

Students of physics, educators teaching mechanics, and professionals in engineering or materials science who seek a deeper understanding of friction and energy dynamics in physical systems.

nikolafmf
Messages
112
Reaction score
0
I have read that static friction does no work and energy of the system is conserved if only this type of friction exists. Is this only an experimental fact, or can it be proved from basic principles? If it can, how?
 
Physics news on Phys.org
http://en.wikipedia.org/wiki/Friction#Static_friction :

"Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. "

Where have you read that static friction does no work?

Assume that by a static friction contact you are able to set a mass into motion.
You must have transferred some energy to the mass, isn't it?
Is there a fundamental difference between static friction and a contact force, excpet that one is tengential and the other normal to the contact surfaces?
 
maajdl said:
Where have you read that static friction does no work?
Tipler, "Physics for Scientists and Engineers", 5th edition, page 292: "Because the friction is static, it does no work, and there is no dissipation of mechanical energy".

The problem in question is ball rolling down an incline without slipping. The friction between the ball and the incline is said to be static.
 
nikolafmf said:
static friction does no work...
... in the rest frame of the surfaces in contact.
 
I am in agreement with both maajdl and A.T.. The work done by static friction is dependent on the frame of reference of the observer. In fact, work in general is dependent on the frame of reference of the observer.

Chet
 
nikolafmf said:
Tipler, "Physics for Scientists and Engineers", 5th edition, page 292: "Because the friction is static, it does no work, and there is no dissipation of mechanical energy".

The problem in question is ball rolling down an incline without slipping. The friction between the ball and the incline is said to be static.

Tipler said that? That's very disappointing 'cause it ain't always true. But sometimes it is, depending on the specific physical situation.
 
I think there is maybe a confusion here between "work" and "dissipation of energy".
In static friction, no energy can be lost or dissipated.
But work can be done.
 
This is about definitions. Static friction is usually regarded as the force being reversibly/elastically applied to one surface by another. Generally, when you apply a force to a fairly rigid object in contact with another surface, some of that force will be transferred to the interface and cause various changes in the second surface. This can include compression, erosion, deflection, flow, and the creation of various surface defects (all on a microscopic level). In the ideal case (which is no doubt what you are being taught) the atomic nature of the surfaces is NOT considered, hence no work is done. (ie. ideal solids). In the real world, if you touch a glass window, you leave a little bit of you on the glass, and a little bit of glass on you. These effects are ignored, except by the writers of CSI (and by tribologists, surface physicists & chemists, forensic scientists, etc.)
 
  • #10
maajdl said:
I think there is maybe a confusion here between "work" and "dissipation of energy.
Yes, or it is a (mis)interpretation of the "static" qualifier. In general "static friction" means there is no velocity difference between the contact surfaces, not that the contact is at rest.
 
  • #11
abitslow said:
In the ideal case (which is no doubt what you are being taught) the atomic nature of the surfaces is NOT considered, hence no work is done.
Even in the ideal case work is done in any reference frame where the contact patch moves parallel to the force. Work is frame dependent.
 
  • #12
Static friction can be though of in just the same as chains and sprockets or gear wheels and teeth. Work can be said to be 'done on' the chain by the driving crank and the same work is 'done on' the output sprocket. There is a lot of angst, expressed in this thread and many others, concerning who or what 'does the work'. Is it really worth worrying about as long as you do the right Force and Displacement calculations. They will tell you the energy transferred.
 
  • #13
I'm not sure how well defined this is.

For example: Stack a rigid body on another rigid body on a frictionless surface and apply a gentle force to the bottom body. Work is done on the upper body but by which force? It seems arbitrary to me.

Alternatively: If we drop a rigid body onto a moving but unpropelled rigid body, then to argue that static friction does work on the upper body would require a non-physical infinite acceleration. If there is no normal force in the direction of the acceleration then there must be a period of dynamic friction.

The reality is that there is no such thing as a rigid body, though. Conceptually in the idealised case, I think you can have it either way, but I don't think you can construct a case where you are forced to conclude that static friction must do work unless you wish to consider it an external force.
 
Last edited:
  • #15
craigi said:
For example: Stack a rigid body on another rigid body on a frictionless surface and apply a gentle force to the bottom body. Work is done on the upper body but by which force? It seems arbitrary to me.
well, seeing as how there is only one force acting on the upper body, there's not a lot of room for arbitrariness there.

The arbitrary choice was made when we considered this as two bodies with a force acting between them, instead of as one larger body. If we had glued the two bodies together, we wouldn't have any trouble with treating the two bodies as one; and if we instead chose to treat them as two bodies, we'd have no difficulty seeing how the adhesive force of the glue is what's accelerating the upper body. We can think of static friction as just a rather weak glue.
 
  • Like
Likes   Reactions: 1 person
  • #16
Nugatory said:
The arbitrary choice was made when we considered this as two bodies with a force acting between them, instead of as one larger body.
This and the choice of the reference frame of course. Once you decide what the bodies are and choose the reference frame, the rest follows.
 
  • #17
Nugatory said:
If we had glued the two bodies together, we wouldn't have any trouble with treating the two bodies as one; and if we instead chose to treat them as two bodies, we'd have no difficulty seeing how the adhesive force of the glue is what's accelerating the upper body. We can think of static friction as just a rather weak glue.
Nice example!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 59 ·
2
Replies
59
Views
4K
  • · Replies 77 ·
3
Replies
77
Views
5K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K