Bessel functions Definition and 75 Threads
-
J
Bessel functions of the first kind
Homework Statement Can anyone tell me if: \frac{d}{dx}J_k(ax)=aJ'_k(x) where a is a real positive constant and J_k(x) is the Bessel function of the first kind. Regards John Homework Equations The Attempt at a Solution- John 123
- Thread
- Bessel Bessel functions Functions
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
M
Double integration of functions involving bessel functions and cosines/sines
Can we integrate double integrals involving bessel functions and sinusoids in maple. Also, the overlap of sine and cosine over the range of 0 to 2 * Pi must be exactly zero, but, in maple, it gives some value (of the order of -129). Is there any software, which can compute the exact double... -
R
How do you combine Bessel functions?
Hi, I have been trying to solve this differential equation for a while now. Now I get to the point where I have the solution, but it includes an integral. The integral is \int x J_{1/4}(ax) J_{1/4}(bx) e^{-x^2t}dx , where a and b are constants, and the integral is from zero to...- renz
- Thread
- Bessel Bessel functions Functions
- Replies: 2
- Forum: Differential Equations
-
H
Bessel Functions - Eigenvalues + Eigenfunctions
Homework Statement I'm given a standard form of Bessel's equation, namely x^2y\prime\prime + xy\prime + (\lambda x^2-\nu^2)y = 0 with \nu = \frac{1}{3} and \lambda some unknown constant, and asked to find its eigenvalues and eigenfunctions. The initial conditions are y(0)=0 and...- heilEuler
- Thread
- Bessel Bessel functions Eigenfunctions Eigenvalues Functions
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
M
Simple integration of bessel functions
I seek a way to integrate J0, bessel function. I try to use some of the identities I can find, but it takes me no were. Please help!- Mappe
- Thread
- Bessel Bessel functions Functions Integration
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
Cylindrical potential problem using Bessel functions
Jackson 3.12: An infinite, thin, plane sheet of conducting material has a circular hole of radius a cut in it. A thin, flat disc of the same material and slightly smaller radius lies in the plane, filling the hole, but separted from the sheet by a very narrow insulating ring. The disc is...- Pengwuino
- Thread
- Bessel Bessel functions Cylindrical Functions Potential
- Replies: 2
- Forum: Advanced Physics Homework Help
-
A
Integral of Bessel functions combination?
I want to ask if you how to compute such integral like: int(t**2*BesselJ(1,a*t)*BesselJ(1,b*t)*BesselJ(1,c*t), t=1..w) or int(t**3*BesselJ(1,a*t)*BesselJ(1,b*t)*BesselJ(1,c*t)*BesselJ(1,d*t), t=1..w) The same question if any BesselJ is replaced by BesselY. Thanks -
A
Integrating products of Bessel functions
Hi guys, Does anyone have any ideas about an analytical solution for the following integral? \int_{0}^{2\pi}J_{m}\left(z_{1}\cos\theta\right)J_{n}\left(z_{2}\sin\theta\right)d\theta J_{m}\left(\right) is a Bessel function of the first kind of order m. Thanks.- appelberry
- Thread
- Bessel Bessel functions Functions
- Replies: 1
- Forum: Calculus
-
J
Summation of a series of bessel functions
The problem is to prove the following: \sum_{m>0}J_{j+m}(x)J_{j+m+n}(x) = \frac{x}{2n}\left(J_{j+1}(x)J_{j+n}(x) - J_{j}(x)J_{j+n+1}(x)\right). Now for the rambling... I've been reading for a while, but this is my first post. Did a quick search, but I didn't find anything relevant. I could...- JertLankster
- Thread
- Bessel Bessel functions Functions Series Summation
- Replies: 1
- Forum: Calculus
-
E
Bessel functions, acoustics circular room
Hi everybody ! Maybe this post should go under partial differential equations but I'm not sure... I have the following problem and I would like to know if someone could give me some hints or something to read related to this. I'm studying multiple reflections of acoustics waves in a...- erwinscat
- Thread
- Acoustics Bessel Bessel functions Circular Functions
- Replies: 2
- Forum: Electromagnetism
-
A
How to Solve a Bessel Differential Equation Using Runge-Kutta in C?
Differntial equation involving bessel functions - pls help! 1. I am trying to simplify the expression in the attachment below to extract some data: https://www.physicsforums.com/attachment.php?attachmentid=18352&d=1239157280 2. the relevant equation for beta is given by...- aadepetun
- Thread
- Bessel Bessel functions Functions
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
A
Integrals with bessel functions
I am trying to solve int(int(exp(a*cos(theta)*sin(phi))*sin(phi), phi = 0 .. Pi), theta = 0 .. 2*Pi) (1) with a a constant. Using the second last definite integral on http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions the integral (1) reduces to...- areslagae
- Thread
- Bessel Bessel functions Functions Integrals
- Replies: 3
- Forum: General Math
-
K
Eigenvalue problem using Bessel Functions
Homework Statement Bessels equation of order n is given as the following: y'' + \frac{1}{x}y' + (1 - \frac{n^2}{x^2})y = 0 In a previous question I proved that Bessels equation of order n=0 has the following property: J_0'(x) = -J_1(x) Where J(x) are Bessel functions of...- kidmode01
- Thread
- Bessel Bessel functions Eigenvalue Eigenvalue problem Functions
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
K
Spherical bessel functions addition theorems
I really need to prove eq. 10.1.45 and 10.1.46 of Abramowitz and Stegun Handbook on Mathematical functions. Is an expansion of e^(aR)/R in terms of Special Functions! Any help will be appreciated.- Knockout
- Thread
- Addition Bessel Bessel functions Functions Spherical
- Replies: 6
- Forum: Differential Equations
-
T
SoS problem in legendre and bessel functions
hello every body ... I am a new member in this forums ..:smile: and i need ur help in telling me what's the perfect way to study legendre and bessel function for someone doesn't know anything about them and having a hard time in trying to understand ... i`ll be thankful if u...- thebigstar25
- Thread
- Bessel Bessel functions Functions Legendre
- Replies: 14
- Forum: Calculus and Beyond Homework Help
-
P
Are bessel functions pure real?
Homework Statement I'm wondering if the bessel functions are pure real. What I really want to know is that if the bessel funtions are J and Y (i.e. first and second kinds), and the Hankel functions are H_1=J+iY and H_2=J-iY, then can we say that H_1=H_{2}^{*} where the * denotes complex...- Pacopag
- Thread
- Bessel Bessel functions Functions Pure
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
P
Differentiatiang Bessel functions
Hi all, I am trying to find an expression for the values of the derivates of the Bessel-J_1 functions at two. The function is defined by J_1(x)=\sum_{k=0}^\infty{\frac{(-1)^k}{(k+1)!k!}\left(\frac{x}{2}\right)^{2k+1}} this I can differentiate term by term, finding for the n^th derivative at...- Pere Callahan
- Thread
- Bessel Bessel functions Functions
- Replies: 11
- Forum: Calculus
-
P
Bessel Functions / Eigenvalues / Heat Equation
Hello Trying to calculate and simulate with Matlab the Steady State Temperature in the circular cylinder I came to the book of Dennis G. Zill Differential Equations with Boundary-Value Problems 4th edition pages 521 and 522 The temperature in the cylinder is given in cylindrical...- phioder
- Thread
- Bessel Bessel functions Eigenvalues Functions Heat Heat equation
- Replies: 23
- Forum: Differential Equations
-
P
Differentiating Bessel Functions
Hi all, I was just wondering if anyone knew how to differentiate Bessel functions of the second kind? I've looked all over the net and in books and no literature seems to address this problem. I don't know if its just my poor search techniques but any assistance would be appreciated.- physkid
- Thread
- Bessel Bessel functions Differentiating Functions
- Replies: 4
- Forum: Differential Equations
-
C
Solving Bessel Function for Sin: $\sqrt{\frac{\pi x}{2}} J_{1/2}(x) = \sin{x}$
The Bessel function can be written as a generalised power series: J_m(x) = \sum_{n=0}^\infty \frac{(-1)^n}{ \Gamma(n+1) \Gamma(n+m+1)} ( \frac{x}{2})^{2n+m} Using this show that: \sqrt{\frac{ \pi x}{2}} J_{1/2}(x)=\sin{x} where...- cpt_carrot
- Thread
- Bessel Bessel functions Functions
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
J
Inverse Fourier Transform of Bessel Functions
I want to solve the partial differential equation \Delta f(r,z) = f(r,z) - e^{-(\alpha r^2 + \beta z^2)} where \Delta is the laplacian operator and \alpha, \beta > 0 In full cylindrical symmetry, this becomes \frac{\partial_r f}{r} + \partial^2_rf + \partial^2_z f = f - e^{-(\alpha r^2 +...- jdstokes
- Thread
- Bessel Bessel functions Fourier Fourier transform Functions Inverse inverse fourier Transform
- Replies: 2
- Forum: Differential Equations
-
S
Help Needed: Understanding Bessel Functions & Schrodinger Equations
Hi there ; I wanted you to help me with a problem. Well, I'm now studying griffiths' quantum book and now I'm trying the three dimensional schrodinger equation. I just wanted to know more about bessel functions. Can anyone give me a link for it? Some useful book will be good too. Thanks a...- somy
- Thread
- Bessel Bessel functions Functions Schrödinger
- Replies: 2
- Forum: Quantum Physics
-
T
Zero's of the modified Bessel functions,
I have the solution to a particular D.E. (Airy's D.E.) which is in terms of Airy functions, namely a linear combination of Ai(x) and Bi(x), to which I have to fit to the boundary conditions. Both Ai(x) and Bi(x) can be cast into a form which involves both modified Bessel functions of the first... -
C
How Do I Find the Bessel Transform of a Sequence of Numbers?
Hey guys I was wondering if you could help me out with a proof of the recursion relations of Bessel functions on my homework: Show by direct differentiation that J_{\nu}(x)=\sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!(s + \nu)!} \left (\frac{x}{2}\right)^{\nu+2s} obeys the...- csmines
- Thread
- Bessel Bessel functions Functions
- Replies: 2
- Forum: Introductory Physics Homework Help
-
B
The Role of Bessel Functions in Frequency Modulation Theory
What role do Bessel functions play in frequency modulation theory?- bosonics
- Thread
- Bessel Bessel functions Frequency Functions Modulation Theory
- Replies: 1
- Forum: General Math