(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I'm given a standard form of Bessel's equation, namely

[tex] x^2y\prime\prime + xy\prime + (\lambda x^2-\nu^2)y = 0 [/tex]

with [itex] \nu = \frac{1}{3} [/itex] and [itex] \lambda [/itex] some unknown constant, and asked to find its eigenvalues and eigenfunctions.

The initial conditions are [itex] y(0)=0 [/itex] and [itex] y\prime (\pi)=0 [/itex].

3. The attempt at a solution

This is a single question assignment, so it's supposed to be reasonably extensive. What troubles me is that as far as I know, with this being THE typical Bessel equation, aren't the eigenfunctions pretty much a given? (i.e. they will be one sine and one cosine function of [itex] \sqrt{\lambda} [/itex] and x, right?)

***Check my understanding please; the eigenfunctions are the functions in the general solution, and the eigenvalues are their respective coefficients? For example if some simple equation has the solution [tex] y(x) = C_1 e^{ikx} + C_2 e^{-ikx} [/tex] then the eigenfunctions are [itex] e^{\pm ikx} [/itex] and the eigenvalues are [itex] C_1, C_2 [/itex], right? ***

I mean I can derive them, but it's not particularly difficult, especially since we did it in class, which makes me wonder if it's really what the professor wants.

The eigenvalues I should be able to determine with the two initial conditions I'm given, I think. So mainly, I'm curious if I'm doing the right thing, or if I'm completely off base with my interpretation of the question.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Bessel Functions - Eigenvalues + Eigenfunctions

**Physics Forums | Science Articles, Homework Help, Discussion**