Electromagnetic radiation

In physics, electromagnetic radiation (EM radiation or EMR) refers to the waves (or their quanta, photons) of the electromagnetic field, propagating through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays. All of these waves form part of the electromagnetic spectrum.Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. Electromagnetic radiation or electromagnetic waves are created due to periodic change of electric or magnetic field. Depending on how this periodic change occurs and the power generated, different wavelengths of electromagnetic spectrum are produced. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted c. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The wavefront of electromagnetic waves emitted from a point source (such as a light bulb) is a sphere. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength these are: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.Electromagnetic waves are emitted by electrically charged particles undergoing acceleration, and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near field refers to EM fields near the charges and current that directly produced them, specifically electromagnetic induction and electrostatic induction phenomena.
In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic field, responsible for all electromagnetic interactions. Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level. Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation. The energy of an individual photon is quantized and is greater for photons of higher frequency. This relationship is given by Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is Planck's constant. A single gamma ray photon, for example, might carry ~100,000 times the energy of a single photon of visible light.
The effects of EMR upon chemical compounds and biological organisms depend both upon the radiation's power and its frequency. EMR of visible or lower frequencies (i.e., visible light, infrared, microwaves, and radio waves) is called non-ionizing radiation, because its photons do not individually have enough energy to ionize atoms or molecules or break chemical bonds. The effects of these radiations on chemical systems and living tissue are caused primarily by heating effects from the combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are called ionizing radiation, since individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds. These radiations have the ability to cause chemical reactions and damage living cells beyond that resulting from simple heating, and can be a health hazard.

View More On Wikipedia.org
  • 133

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,443
    • Media
      227
    • Reaction score
      10,021
    • Points
      1,237
  • 1

    Ian Baughman

    A PF Electron From Ann Arbor, Michigan
    • Messages
      36
    • Reaction score
      2
    • Points
      14
  • 1

    jorgeha

    A PF Quark
    • Messages
      12
    • Reaction score
      1
    • Points
      1
  • 1

    Dvorak

    A PF Quark From India
    • Messages
      12
    • Reaction score
      0
    • Points
      4
  • 1

    kelvin490

    A PF Cell From U.K.
    • Messages
      228
    • Reaction score
      3
    • Points
      111
  • 1

    Lukeblackhill

    A PF Electron From Cambridge
    • Messages
      39
    • Reaction score
      3
    • Points
      14
  • 1

    Phaeous

    A PF Quark
    • Messages
      2
    • Reaction score
      0
    • Points
      1
  • 1

    jcap

    A PF Molecule
    • Messages
      170
    • Reaction score
      12
    • Points
      63
  • 1

    Moe123

    A PF Quark
    • Messages
      14
    • Reaction score
      0
    • Points
      1
  • 1

    Joker93

    A PF Molecule From Cyprus
    • Messages
      504
    • Reaction score
      36
    • Points
      77
  • 1

    Narayanan KR

    A PF Molecule
    • Messages
      76
    • Reaction score
      4
    • Points
      58
  • 1

    TheSodesa

    A PF Electron
    • Messages
      224
    • Reaction score
      7
    • Points
      16
  • 1

    Hongo

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • 1

    Noduagga

    A PF Electron
    • Messages
      24
    • Reaction score
      1
    • Points
      11
  • 1

    Suekdccia

    A PF Molecule
    • Messages
      259
    • Reaction score
      24
    • Points
      73
  • 1

    Dace123

    A PF Quark
    • Messages
      4
    • Reaction score
      0
    • Points
      1
  • 1

    hagopbul

    A PF Cell
    • Messages
      357
    • Reaction score
      36
    • Points
      139
  • 1

    Harry Klein

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • 1

    The Echo

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • 1

    Samama Fahim

    A PF Molecule
    • Messages
      52
    • Reaction score
      4
    • Points
      58
  • Back
    Top