Terminal speed

Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid (air is the most common example). It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration.In fluid dynamics, an object is moving at its terminal velocity if its speed is constant due to the restraining force exerted by the fluid through which it is moving.As the speed of an object increases, so does the drag force acting on it, which also depends on the substance it is passing through (for example air or water). At some speed, the drag or force of resistance will equal the gravitational pull on the object (buoyancy is considered below). At this point the object stops accelerating and continues falling at a constant speed called the terminal velocity (also called settling velocity). An object moving downward faster than the terminal velocity (for example because it was thrown downwards, it fell from a thinner part of the atmosphere, or it changed shape) will slow down until it reaches the terminal velocity. Drag depends on the projected area, here, the object's cross-section or silhouette in a horizontal plane. An object with a large projected area relative to its mass, such as a parachute, has a lower terminal velocity than one with a small projected area relative to its mass, such as a dart. In general, for the same shape and material, the terminal velocity of an object increases with size. This is because the downward force (weight) is proportional to the cube of the linear dimension, but the air resistance is approximately proportional to the cross-section area which increases only as the square of the linear dimension. For very small objects such as dust and mist, the terminal velocity is easily overcome by convection currents which prevent them from reaching the ground and hence they stay suspended in the air for indefinite periods. Air pollution and fog are examples of convection currents.

View More On Wikipedia.org
  • 26

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,443
    • Media
      227
    • Reaction score
      10,021
    • Points
      1,237
  • 1

    Tatortotts

    A PF Quark
    • Messages
      4
    • Reaction score
      0
    • Points
      1
  • 1

    Elvis 123456789

    A PF Electron
    • Messages
      158
    • Reaction score
      6
    • Points
      16
  • 1

    Markus Lervik

    A PF Quark
    • Messages
      7
    • Reaction score
      0
    • Points
      1
  • 1

    Ushitha Dissanayake

    A PF Quark
    • Messages
      9
    • Reaction score
      0
    • Points
      4
  • Back
    Top