MHB 15.2.60 Reverse the order of integration

Click For Summary
The discussion focuses on reversing the order of integration for two double integrals. For the first integral, the limits change from \( \int_0^1 \int_2^{2e^x} f(x,y) dy \, dx \) to \( \int_2^{2e} \int_{\ln(\frac{y}{2})}^1 f(x,y) dx \, dy \). The second integral transitions from \( \int_0^6 \int_{\sin^{-1}(\frac{y}{6})}^{\frac{\pi}{2}} f(x,y) dx \, dy \) to \( \int_0^{\frac{\pi}{2}} \int_0^{6\sin(x)} f(x,y) dy \, dx \). The participants verify the new limits of integration through logical deductions based on the original bounds. The final results demonstrate the successful application of reversing the order of integration.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Reverse the order of integration in the following integral }$

\begin{align*}\displaystyle
I&=\int_0^1 \int_2^{2e^x}f(x,y) dydx
\end{align*}
ok tried to follow some examples but 😰
\begin{align*}\displaystyle
I&=\int_0^1 \int_?^{?}f(x,y) dxdy
\end{align*}
 
Physics news on Phys.org
From the integral we have that $0\leq x\leq 1$ and $2\leq y\leq 2e^x$.

So, we get that $y\leq 2e^x \Rightarrow \frac{y}{2}\leq e^x \Rightarrow \ln \left (\frac{y}{2}\right )\leq x$.

Therefore, we get that $\ln \left (\frac{y}{2}\right )\leq x\leq 1$ and $2\leq y\leq 2e^x\leq 2e^1=2e$.

We have to check if the condition $0 \le x$ still holds. We have that $\ln \left( \frac y 2\right) \ge 0$, so the condition holds.

So, by changing the order of integrals we get the following $$I=\int_2^{2e} \int_{\ln \left (\frac{y}{2}\right )}^1f(x,y) dxdy $$
 
Last edited by a moderator:
ok let me try one more that is similar
Reverse the order of integration in the following integral
$\displaystyle\int_{0}^{6} \int_{\sin^{-1}{\frac{y}{6}}}^{^{\frac{\pi}{2}}} f(x,y) \, dx \,dy$
$\textsf{From the integral we have that $0 \le x \le 6$}$
and
$\sin^{-1}{\frac{y}{6}} \le y \le \frac{\pi}{2}$
$\therefore y \le \frac{\pi}{2}$ and $\sin^{-1}{\frac{y}{6}} \le y$

do we plug $6$ into $\displaystyle \sin^{-1}{\frac{y}{6}}\implies \sin^{-1}{\frac{6}{6}}\implies \frac{\pi}{2}$ ?
 
Last edited:
From $\displaystyle\int_{0}^{6} \int_{\sin^{-1}{\frac{y}{6}}}^{\frac{\pi}{2}} f(x,y) \, dx \,dy$ we have that the inner integral corresponds to the inner differential, $dx$, and the outer intergral to $dy$.

If we use parentheses it will be clearer: $$\int_{0}^{6} \left (\int_{\sin^{-1}{\frac{y}{6}}}^{\frac{\pi}{2}} f(x,y) \, dx \right )\,dy$$ Therefore, we have that $0\leq y\leq 6$ and $\sin^{-1}\frac{y}{6}\leq x\leq \frac{\pi}{2}$.

Try from here to find the new limits.
 
mathmari said:
$$\int_{0}^{6} \left (\int_{\sin^{-1}{\frac{y}{6}}}^{\frac{\pi}{2}} f(x,y) \, dx \right )\,dy$$
Therefore, we have that $0\leq y\leq 6$ and $\sin^{-1}\frac{y}{6}\leq x\leq \frac{\pi}{2}$.
$\sin^{-1}\frac{y}{6}= x
\implies\sin(x)=\frac{y}{6}
\implies 6\sin(x)=y $
so does $\frac{\pi}{2}=x$.
 
Last edited:
karush said:
$\sin^{-1}\frac{y}{6}= x
\implies\sin(x)=\frac{y}{6}
\implies 6\sin(x)=y $
so does $\frac{\pi}{2}=x$.

We have that $0\leq y\leq 6$ and $\sin^{-1}\frac{y}{6}\leq x\leq \frac{\pi}{2}$

We get $\sin^{-1}\frac{y}{6}\leq x \Rightarrow \frac{y}{6}\leq \sin (x) \Rightarrow y\leq 6\sin (x)$ and so $0\leq y\leq 6\sin (x)$ and $0\leq x\leq \frac{\pi}{2}$.

So, we get the double integral $\int_{0}^{\frac{\pi}{2}} \left (\int_{0}^{6\sin (x)} f(x,y) \, dy \right )\,dx$.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K