15.2.60 Reverse the order of integration

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integration Reverse
Click For Summary

Discussion Overview

The discussion revolves around reversing the order of integration for double integrals, specifically focusing on two examples. The participants explore the necessary transformations and limits for the integrals, engaging in technical reasoning and mathematical exploration.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents an integral and seeks help in reversing the order of integration, indicating uncertainty about the limits.
  • Another participant analyzes the first integral, deriving new limits based on the conditions $0 \leq x \leq 1$ and $2 \leq y \leq 2e^x$, concluding with the transformed integral.
  • A different participant introduces a second integral and attempts to establish the limits for reversing the order, questioning the implications of plugging in values.
  • Further contributions clarify the structure of the second integral, emphasizing the relationship between the inner and outer integrals and the limits for $y$ and $x$.
  • Another participant derives the relationship between $y$ and $x$ from the inverse sine function, leading to a new expression for the limits of integration.
  • Finally, a participant summarizes the findings for the second integral, presenting the new limits and the resulting double integral after reversing the order.

Areas of Agreement / Disagreement

Participants generally agree on the process of reversing the order of integration and the transformations involved, but there is no consensus on the final forms of the integrals or the limits in the second example, as some participants express uncertainty and seek clarification.

Contextual Notes

Limitations include potential misunderstandings of the conditions for the integrals and the implications of the transformations, as well as the need for careful consideration of the ranges of $x$ and $y$ in both examples.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Reverse the order of integration in the following integral }$

\begin{align*}\displaystyle
I&=\int_0^1 \int_2^{2e^x}f(x,y) dydx
\end{align*}
ok tried to follow some examples but 😰
\begin{align*}\displaystyle
I&=\int_0^1 \int_?^{?}f(x,y) dxdy
\end{align*}
 
Physics news on Phys.org
From the integral we have that $0\leq x\leq 1$ and $2\leq y\leq 2e^x$.

So, we get that $y\leq 2e^x \Rightarrow \frac{y}{2}\leq e^x \Rightarrow \ln \left (\frac{y}{2}\right )\leq x$.

Therefore, we get that $\ln \left (\frac{y}{2}\right )\leq x\leq 1$ and $2\leq y\leq 2e^x\leq 2e^1=2e$.

We have to check if the condition $0 \le x$ still holds. We have that $\ln \left( \frac y 2\right) \ge 0$, so the condition holds.

So, by changing the order of integrals we get the following $$I=\int_2^{2e} \int_{\ln \left (\frac{y}{2}\right )}^1f(x,y) dxdy $$
 
Last edited by a moderator:
ok let me try one more that is similar
Reverse the order of integration in the following integral
$\displaystyle\int_{0}^{6} \int_{\sin^{-1}{\frac{y}{6}}}^{^{\frac{\pi}{2}}} f(x,y) \, dx \,dy$
$\textsf{From the integral we have that $0 \le x \le 6$}$
and
$\sin^{-1}{\frac{y}{6}} \le y \le \frac{\pi}{2}$
$\therefore y \le \frac{\pi}{2}$ and $\sin^{-1}{\frac{y}{6}} \le y$

do we plug $6$ into $\displaystyle \sin^{-1}{\frac{y}{6}}\implies \sin^{-1}{\frac{6}{6}}\implies \frac{\pi}{2}$ ?
 
Last edited:
From $\displaystyle\int_{0}^{6} \int_{\sin^{-1}{\frac{y}{6}}}^{\frac{\pi}{2}} f(x,y) \, dx \,dy$ we have that the inner integral corresponds to the inner differential, $dx$, and the outer intergral to $dy$.

If we use parentheses it will be clearer: $$\int_{0}^{6} \left (\int_{\sin^{-1}{\frac{y}{6}}}^{\frac{\pi}{2}} f(x,y) \, dx \right )\,dy$$ Therefore, we have that $0\leq y\leq 6$ and $\sin^{-1}\frac{y}{6}\leq x\leq \frac{\pi}{2}$.

Try from here to find the new limits.
 
mathmari said:
$$\int_{0}^{6} \left (\int_{\sin^{-1}{\frac{y}{6}}}^{\frac{\pi}{2}} f(x,y) \, dx \right )\,dy$$
Therefore, we have that $0\leq y\leq 6$ and $\sin^{-1}\frac{y}{6}\leq x\leq \frac{\pi}{2}$.
$\sin^{-1}\frac{y}{6}= x
\implies\sin(x)=\frac{y}{6}
\implies 6\sin(x)=y $
so does $\frac{\pi}{2}=x$.
 
Last edited:
karush said:
$\sin^{-1}\frac{y}{6}= x
\implies\sin(x)=\frac{y}{6}
\implies 6\sin(x)=y $
so does $\frac{\pi}{2}=x$.

We have that $0\leq y\leq 6$ and $\sin^{-1}\frac{y}{6}\leq x\leq \frac{\pi}{2}$

We get $\sin^{-1}\frac{y}{6}\leq x \Rightarrow \frac{y}{6}\leq \sin (x) \Rightarrow y\leq 6\sin (x)$ and so $0\leq y\leq 6\sin (x)$ and $0\leq x\leq \frac{\pi}{2}$.

So, we get the double integral $\int_{0}^{\frac{\pi}{2}} \left (\int_{0}^{6\sin (x)} f(x,y) \, dy \right )\,dx$.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K