180 degree phase shift of reflected light

AI Thread Summary
When light reflects off a surface with a higher refractive index, it experiences a 180-degree phase shift due to the interaction with the surface's electromagnetic properties. The magnetic component of the incident light induces a current in the mirror, which generates a magnetic field that cancels the incident light. This phenomenon is explained through Stokes relations, which indicate that reflection coefficients are equal but opposite depending on the light's direction. The energy reflected is a result of the current on the mirror's surface. Understanding this interaction clarifies why the phase shift occurs during reflection.
ramsd
Messages
2
Reaction score
0
When light originating from a medium of lower refractive index reflects off a surface of higher refractive index, why does the phase shift by 180 degrees? Stokes relations show that reflection coefficients at the surface are equal but of opposite signs depending on direction of light (i.e. from lower to higher refractive index versus higher to lower); but Stokes relation does not tell me explicitly which one is shifted by 180 degrees. Can someone please provide an explanation for this. I have researched the internet with no success. Thank you in advance.
 
Science news on Phys.org
The magnetic component of the incident ray induces a perpendicular current in the mirror. That current generates a perpendicular magnetic field, that cancels the incident ray into the mirror.
The energy that is reflected is due to the current flowing on the mirror surface.

i·i = i² = -1.
Rotating 90° twice makes 180°.
 
Baluncore said:
The magnetic component of the incident ray induces a perpendicular current in the mirror. That current generates a perpendicular magnetic field, that cancels the incident ray into the mirror.
The energy that is reflected is due to the current flowing on the mirror surface.

i·i = i² = -1.
Rotating 90° twice makes 180°.
Thanks Baluncore, that clears it up.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top