MHB 244.T.15.5.11 Evaluate the triple integral

Click For Summary
The discussion focuses on evaluating the triple integral I = ∫₀^(π/6) ∫₀¹ ∫₋₂³ y sin(z) dx dy dz. The initial steps involve simplifying the integral by calculating the inner integral with respect to x, yielding a constant value of 5. The next steps involve integrating y and then sin(z), leading to the final result of I = (5(2 - √3))/4. Participants confirm the correctness of the notation and the use of absolute value bars in the calculations. The thread emphasizes the importance of clear notation and proper integration techniques in solving triple integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$tiny{244.T.15.5.11}$
$\textsf{Evaluate the triple integral}\\$
\begin{align*}\displaystyle
I_{\tiny{11}}&=\int_{0}^{\pi/6}\int_{0}^{1}\int_{-2}^{3} y\sin{z}
\, d\textbf{x} \, d\textbf{y} \, d\textbf{z}\\
&=\int_{0}^{\pi/6}\int_{0}^{1}
\Biggr|xy\sin{z} \Biggr|_{-2}^{3}
\, d\textbf{y} \, d\textbf{z}\\
ans&=\color{red}{\frac{5(2-\sqrt{3})}{4}}
\end{align*}ok just want to see if these first steps are correct with xyz
 
Physics news on Phys.org
I would begin by writing:

$$I=\int_{0}^{\pi/6}\sin(z)\int_{0}^{1}y\int_{-2}^{3}\,dx\,dy\,dz$$

As $$\int_{-2}^{3}\,dx=5$$ we then have:

$$I=5\int_{0}^{\pi/6}\sin(z)\int_{0}^{1}y\,dy\,dz$$

Now continue...:)
 
So then continuing..

$$\begin{align*}\displaystyle
I_{11}&=\int_{0}^{\pi/6}\int_{0}^{1}\int_{-2}^{3} y\sin{z}
\, dx \, dy \, dz\\
&=5\int_{0}^{\pi/6}\sin(z)
\int_{0}^{1}y \,dy\,dz\\
&=5\int_{0}^{\pi/6}
\sin(z)\Biggr|\frac{y^2}{2}\Biggr|_{0}^{1} \,dz\\
&=\frac{5}{2}\int_{0}^{\pi/6}\sin(z)\,dz\\
&=\frac{5}{2}\Biggr|-\cos(z)\Biggr|_{z=0}^{z=\pi/6}
=\frac{5}{2}\Biggr[-\frac{\sqrt{3}}{2}-(-1)\Biggr]
=\color{red}{\frac{5(2-\sqrt{3})}{4}}
\end{align*}
$$

hopefully
any suggest?
 
Last edited:
Incorrect notation; otherwise correct. :)
 
do you the vertical bars?
 
Ah, I see you fixed it!

Observe:

$$\left.-\frac{5}{2}\cos(z)\right|_{z=0}^{z=\pi/6}$$

Now you can use pure bars!

For something bigger:

$$\left.\left(\frac{x^2}{2}+3x+4\right)\right|^{4}_{x=0}$$
 

Similar threads

Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K