281 7.5.9 int with partail fractions

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Fractions
Click For Summary
SUMMARY

The integral $$\displaystyle \int_2^4 \dfrac{x+2}{x^2+3x-4}\, dx$$ can be solved using partial fractions. The expression is decomposed as $$\dfrac{x+2}{(x+4)(x-1)} = \dfrac{2}{5(x+4)} + \dfrac{3}{5(x-1)}$$, where A and B are determined to be $$A = \dfrac{2}{5}$$ and $$B = \dfrac{3}{5}$$ through matching coefficients and strategic substitution. The final result of the integral evaluates to $$\dfrac{1}{5}\ln{48}$$, confirming the solution's accuracy.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with partial fraction decomposition
  • Knowledge of logarithmic properties
  • Ability to solve systems of equations
NEXT STEPS
  • Study advanced techniques in partial fraction decomposition
  • Learn about integration techniques involving logarithmic functions
  • Explore the Heaviside method for finding coefficients in partial fractions
  • Practice solving definite integrals with varying limits
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to enhance their understanding of partial fractions in integral calculus.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate the integral.
$$\displaystyle \int_2^4
\dfrac{x+2}{x^2+3x-4}\, dx$$
W|A returned these partial fractions but I don't know where the the A=2 B=3 and 5 came from
$$
\dfrac{x+2}{(x+4)(x-1)}
=\dfrac{2}{5(x+4)}+\dfrac{3}{5(x-1)}$$

the book answer was
$$\dfrac{4}{5}\ln{2}+\dfrac{1}{5}\ln {3}
=\dfrac{1}{5}\ln{48}$$
 
Last edited:
Physics news on Phys.org
Re: 281 7.5.9 int wiht partail fractions

$\dfrac{x+2}{x^2+3x-4} = \dfrac{x+2}{(x+4)(x-1)} = \dfrac{A}{x+4} + \dfrac{B}{x-1}$

$ \dfrac{x+2}{(x+4)(x-1)} = \dfrac{A(x-1)}{(x+4)(x-1)} + \dfrac{B(x+4)}{(x+4)(x-1)}$

common denominator for all terms $\implies$ numerators form the equation ...$x+2 = A(x-1) + B(x+4)$

two methods ...

(1) matching coefficients

$x+2 = (A+B)x + (4B-A) \implies A+B = 1 \text{ and } 4B-A = 2$

solving the system by elimination yields $5B = 3 \implies B = \dfrac{3}{5} \text{ and } A = \dfrac{2}{5}$

$ \dfrac{x+2}{(x+4)(x-1)} = \dfrac{2}{5(x+4)} + \dfrac{3}{5(x-1)}$(2) Heaviside method ... pick strategic values for $x$ to eliminate $A$ or $B$

$x+2 = A(x-1) + B(x+4)$

let $x=1$ ...

$1+2 = A(1-1) + B(1+4) \implies B = \dfrac{3}{5}$

let $x=-4$ ...

$-4+2 = A(-4-1) + B(-4+4) \implies A = \dfrac{2}{5}$$$\int \dfrac{2}{5(x+4)} + \dfrac{3}{5(x-1)} \, dx = \dfrac{2}{5}\ln(x+4) + \dfrac{3}{5}\ln(x-1) = \dfrac{\ln[(x+4)^2(x-1)^3]}{5}$$$\bigg[ \dfrac{\ln[(x+4)^2(x-1)^3]}{5} \bigg]_2^4 = \dfrac{\ln(64 \cdot 27) - \ln(36)}{5} = \dfrac{\ln(48)}{5}$
 
Re: 281 7.5.9 int wiht partail fractions

OK I see

you let on of the variables be multiplied by zero to isolate the the other one

:cool:
 
Re: 281 7.5.9 int wiht partail fractions

wow with 377 views that was a great help

they did one in class but I got lost on getting A and B

really appreciate the steps

if this were yahoo it would be torture to read without the latex

Mahalo
 
Re: 281 7.5.9 int wiht partail fractions

karush said:
wow with 377 views that was a great help

they did one in class but I got lost on getting A and B

really appreciate the steps

if this were yahoo it would be torture to read without the latex

Mahalo
Yeah but I still sometimes miss those old days where DOS was high tech and Windows hadn't been invented yet.

-Dan
 
Re: 281 7.5.9 int wiht partail fractions

topsquark said:
Yeah but I still sometimes miss those old days where DOS was high tech and Windows hadn't been invented yet.

-Dan

Well I miss the pre transistor days...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K