2nd basis function for 2nd order ODE

X89codered89X
Messages
149
Reaction score
2
i have the first solution y_1(t) = t for (1-t)y'' + ty' - y = 0.

I need to get the 2nd linearly independent using Abels theorem.

the integration is messy but i have it set up (sorry no latex);

y_2 = (t) * integral to t ( 1/s^2 * exp( -integral to t (s(s+1) ds) ) ds.

Could anyone show me how to do this integration step by step?

Thanks in advance!
 
Physics news on Phys.org
found it, integral was a telescoping series from parts. the solution is \exp(-t)
 
Obviously, the second solution is exp(t)
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top