3 consecutive terms of AP that are perfect square

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Ap Square Terms
Click For Summary
SUMMARY

The discussion centers on finding a parametric representation of three consecutive perfect squares that form an arithmetic progression (AP), specifically in the form of \(x^2\), \(y^2\), and \(z^2\). It is established that while four successive terms cannot all be perfect squares in an AP, the existence of three consecutive perfect squares in an AP is under investigation. Participants are encouraged to explore the values of \(x\), \(y\), and \(z\) that satisfy this condition.

PREREQUISITES
  • Understanding of arithmetic progression (AP) concepts
  • Familiarity with perfect squares and their properties
  • Basic knowledge of parametric equations
  • Experience with mathematical proofs and problem-solving techniques
NEXT STEPS
  • Research the properties of arithmetic progressions involving perfect squares
  • Explore parametric representations in number theory
  • Investigate existing proofs regarding the impossibility of four perfect squares in AP
  • Examine examples of three consecutive perfect squares in AP and their derivations
USEFUL FOR

Mathematicians, educators, and students interested in number theory, particularly those focusing on sequences, progressions, and the properties of perfect squares.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find parametetric representation of 3 perfect squares which are successive terms in AP ($x^2$,$y^2$,$z^2$) such that $x^2,y^2,z^2$ are successive terms of AP. find x,y,z
 
Mathematics news on Phys.org
kaliprasad said:
find parametetric representation of 3 perfect squares which are successive terms in AP ($x^2$,$y^2$,$z^2$) such that $x^2,y^2,z^2$ are successive terms of AP. find x,y,z

No ans yet. The quesion may be boring.

I shall give a hint

if (x,y,z) is a Pythagorean triplet then $(x-y)^2$, $z^2$ and $(x + y)^2$ are in AP
 
It is proved that( I do not know the proof) we cannot have an AP whose 4 successive terms are in perfect squares
But does there exist an AP whose 3 consecutive terms are perfect squares

Solution:

Let the 3 consecutive term be $a^2,b^2,c^2$

As they are in AP we have
$b^2-a^2 = c^2-b^2$
or $a^2+c^2 = 2b^2$

this has a solution and we know that

if $x^2 + y^2 = z^2 $

then $(x+y)^2 + (x-y)^2 = 2(x^2+y^2) = 2z^2$

so if (x,y,z) is a Pythagorean triplet the $(x-y)^2 ,\, z^2, \, (x+y)^2$ are perfect squares and are in AP.

Or
$a= x-y$
$ b = z^2$
$v= x+ y$
for example
(3,4,5) is Pythagorean triplet so $(4-3)^2,\, 5^2,\,(4+3)^2$ or 1,25,49
(5,12,13) Pythagorean triplet so $(12-5)^2,\, 13^2,\,(12+5)^2$ or 49,169,289

Parametric form of Pythagorean triplet is
$(m^2-n^2),\, (2mn),\, m^2 + n^2$

So Parametric form of the required AP is

$ (m^2-n^2-2mn)^2,\,(m^2+n^2)^2,\,(m^2-n^2+2mn)^2 $
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K