MHB 3 consecutive terms of AP that are perfect square

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Ap Square Terms
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find parametetric representation of 3 perfect squares which are successive terms in AP ($x^2$,$y^2$,$z^2$) such that $x^2,y^2,z^2$ are successive terms of AP. find x,y,z
 
Mathematics news on Phys.org
kaliprasad said:
find parametetric representation of 3 perfect squares which are successive terms in AP ($x^2$,$y^2$,$z^2$) such that $x^2,y^2,z^2$ are successive terms of AP. find x,y,z

No ans yet. The quesion may be boring.

I shall give a hint

if (x,y,z) is a Pythagorean triplet then $(x-y)^2$, $z^2$ and $(x + y)^2$ are in AP
 
It is proved that( I do not know the proof) we cannot have an AP whose 4 successive terms are in perfect squares
But does there exist an AP whose 3 consecutive terms are perfect squares

Solution:

Let the 3 consecutive term be $a^2,b^2,c^2$

As they are in AP we have
$b^2-a^2 = c^2-b^2$
or $a^2+c^2 = 2b^2$

this has a solution and we know that

if $x^2 + y^2 = z^2 $

then $(x+y)^2 + (x-y)^2 = 2(x^2+y^2) = 2z^2$

so if (x,y,z) is a Pythagorean triplet the $(x-y)^2 ,\, z^2, \, (x+y)^2$ are perfect squares and are in AP.

Or
$a= x-y$
$ b = z^2$
$v= x+ y$
for example
(3,4,5) is Pythagorean triplet so $(4-3)^2,\, 5^2,\,(4+3)^2$ or 1,25,49
(5,12,13) Pythagorean triplet so $(12-5)^2,\, 13^2,\,(12+5)^2$ or 49,169,289

Parametric form of Pythagorean triplet is
$(m^2-n^2),\, (2mn),\, m^2 + n^2$

So Parametric form of the required AP is

$ (m^2-n^2-2mn)^2,\,(m^2+n^2)^2,\,(m^2-n^2+2mn)^2 $
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top