Mastering 3D Statics: How to Solve Moments and Forces for Bearings A and B

  • Thread starter Thread starter FissionChips
  • Start date Start date
  • Tags Tags
    3d Moments
Click For Summary
SUMMARY

The discussion focuses on solving a 3D statics problem involving a 200N force applied to a hoist handle, with bearings A and B supporting different loads. The user attempts to calculate the mass 'm' that can be supported, using the equations of equilibrium: ΣM = 0 and ΣF = 0. The user decomposes the force into components and calculates moments about the origin, but encounters issues with the y-component not equating to zero, indicating an over-constrained system. The key takeaway is that while moments can exist on the bearings, they cannot create a moment about the z-axis.

PREREQUISITES
  • Understanding of 3D statics principles
  • Familiarity with vector decomposition
  • Knowledge of equilibrium equations (ΣM = 0, ΣF = 0)
  • Ability to perform cross products in vector mathematics
NEXT STEPS
  • Study the application of equilibrium equations in 3D statics problems
  • Learn about vector decomposition techniques for forces
  • Explore the concept of moments in relation to different axes
  • Review examples of over-constrained systems in statics
USEFUL FOR

Students and professionals in engineering, particularly those studying mechanics, statics, or structural analysis, will benefit from this discussion.

FissionChips
Messages
7
Reaction score
0

Homework Statement


A 200N force is applied to the handle of the hoist in the direction shown. The bearing A supports the thrust (force in the direction of the shaft axis), while bearing B supports only radial load (load normal to the shaft axis). Determine the mass 'm' which can be supported Assume neither bearing to be capable of supporting a moment about a line normal to the shaft axis.

3186413086974b0fb107185eaf343ad7.png


Homework Equations


\Sigma M = 0
\Sigma F = 0
M = r \times F

The Attempt at a Solution


Before I begin, I should start by saying that I realize the solution to this problem is very easy and that the way I'm doing it is needlessly complex. However, I do not understand why my method does not work.

I start by defining a coordinate system and an origin. This system uses the axes depicted in the figure, with the origin set at the point of connection of the handle arm and the shaft. Positive is defined as into the page, up, and right for the x, y, and z components, respectively. I will sum moments around the origin (connection to shaft). I will also use meters instead of millimeters.

Next, I decompose the 200 N force into it's respective components.
F_x = -70.71N
F_y = -173.2N
F_z = -70.71N

As a vector,
<-70.71,-173.2,-70.71>

Next, a position vector, 'r' from the origin to the point of application of the force is required.
<0.25,0,0.075>

The moment about the origin due to the 200 N force is given by:
M_F = r_O \times F

The resultant vector is
<13,12.37,-43.3>

Next, I compute the moment about the origin due to the weight of mass 'm'. The position vector from the origin to the point of application is:
<-0.1,0,-0.35>

The weight vector 'w' is:
<0,-9.81m,0>

Finally, the moment about the origin by the weight is given by:
M_w = r_w \times w

This produces the vector:
<-3.43m,0,0.981m>

The sum of the moments must equal zero. So,
<13,12.37,-43.3> + <-3.43m,0,0.981m> = <0,0,0>

Right away, two problems arise. Firstly, the 'y' or 'j' components result in a non-solution. 12.37 + 0 does not equal 0. Secondly, two equations for 'm' exist, and they are not redundant. In this case, 'm' is over-constrained.

I'm new to 3D statics and the text I'm using is strangely terse with respect to using this method. I should note that I've used this method on several problems before and have obtained the correct solution. I'm not sure what I'm doing wrong here.

Any help would be greatly appreciated!
 
Physics news on Phys.org
FissionChips said:
The sum of the moments must equal zero.
No. The forces on the bearings can have moments about the origin - just not a moment about the z axis.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
Replies
3
Views
2K