1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

3D Vectors Problem - Find Cross Product

  1. Mar 20, 2012 #1
    1. The problem statement, all variables and given/known data

    Given |[itex]\vec{a}[/itex]| = 8, |[itex]\vec{b}[/itex]| = 9 and the angle between vector [itex]\vec{a}[/itex] and [itex]\vec{b}[/itex] is 48° find the cross product, [itex]\vec{a}[/itex] X [itex]\vec{b}[/itex].

    2. Relevant equations

    Let θ = angle between [itex]\vec{a}[/itex] and [itex]\vec{b}[/itex].

    [itex]\vec{a}[/itex] . [itex]\vec{b}[/itex] = ( [itex]\vec{x}[/itex]1 * [itex]\vec{x}[/itex]2 ) + ( [itex]\vec{y}[/itex]1 * [itex]\vec{y}[/itex]2 ) + ( [itex]\vec{z}[/itex]1 * [itex]\vec{z}[/itex]2 ) = |[itex]\vec{a}[/itex]| * |[itex]\vec{b}[/itex]| * Cosθ

    |[itex]\vec{a}[/itex] X [itex]\vec{b}[/itex]| = |[itex]\vec{a}[/itex]| * |[itex]\vec{b}[/itex]| * Sinθ

    [itex]\vec{a}[/itex] X [itex]\vec{b}[/itex] = [ ( [itex]\vec{y}[/itex]1 * [itex]\vec{z}[/itex]2 ) - ( [itex]\vec{y}[/itex]2 * [itex]\vec{z}[/itex]1 ) , ( [itex]\vec{z}[/itex]1 * [itex]\vec{x}[/itex]2 ) - ( [itex]\vec{z}[/itex]2 * [itex]\vec{x}[/itex]1 ) , ( [itex]\vec{x}[/itex]1 * [itex]\vec{y}[/itex]2 ) - ( [itex]\vec{x}[/itex]2 * [itex]\vec{y}[/itex]1 ) ]

    3. The attempt at a solution

    Honestly have no idea how to work this out, the only thing I thought of was assuming the coordinates of one of the vectors. Such as [itex]\vec{a}[/itex] = [0,8,0]. With that use it to solve for the coordinates of [itex]\vec{b}[/itex] with the dot product formula then find the cross product between [itex]\vec{a}[/itex] and [itex]\vec{b}[/itex]. Probably not the right way to do the question though, there might be a formula or method I am not aware.
  2. jcsd
  3. Mar 20, 2012 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    The data given is sufficient to find the length of [itex]\vec{a}\times\vec{b}[/itex] but not to find [itex]\vec{a}\times\vec{b}[/itex]. To see that just imagine rotating the vectors [itex]\vec{a}[/itex] and [itex]vec{b}[/itex] while maintaining the same lengths and angle between them. Clearly the resultant vector will shift direction as you do that.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: 3D Vectors Problem - Find Cross Product