(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Given |[itex]\vec{a}[/itex]| = 8, |[itex]\vec{b}[/itex]| = 9 and the angle between vector [itex]\vec{a}[/itex] and [itex]\vec{b}[/itex] is 48° find the cross product, [itex]\vec{a}[/itex] X [itex]\vec{b}[/itex].

2. Relevant equations

Let θ = angle between [itex]\vec{a}[/itex] and [itex]\vec{b}[/itex].

[itex]\vec{a}[/itex] . [itex]\vec{b}[/itex] = ( [itex]\vec{x}[/itex]1 * [itex]\vec{x}[/itex]2 ) + ( [itex]\vec{y}[/itex]1 * [itex]\vec{y}[/itex]2 ) + ( [itex]\vec{z}[/itex]1 * [itex]\vec{z}[/itex]2 ) = |[itex]\vec{a}[/itex]| * |[itex]\vec{b}[/itex]| * Cosθ

|[itex]\vec{a}[/itex] X [itex]\vec{b}[/itex]| = |[itex]\vec{a}[/itex]| * |[itex]\vec{b}[/itex]| * Sinθ

[itex]\vec{a}[/itex] X [itex]\vec{b}[/itex] = [ ( [itex]\vec{y}[/itex]1 * [itex]\vec{z}[/itex]2 ) - ( [itex]\vec{y}[/itex]2 * [itex]\vec{z}[/itex]1 ) , ( [itex]\vec{z}[/itex]1 * [itex]\vec{x}[/itex]2 ) - ( [itex]\vec{z}[/itex]2 * [itex]\vec{x}[/itex]1 ) , ( [itex]\vec{x}[/itex]1 * [itex]\vec{y}[/itex]2 ) - ( [itex]\vec{x}[/itex]2 * [itex]\vec{y}[/itex]1 ) ]

3. The attempt at a solution

Honestly have no idea how to work this out, the only thing I thought of was assuming the coordinates of one of the vectors. Such as [itex]\vec{a}[/itex] = [0,8,0]. With that use it to solve for the coordinates of [itex]\vec{b}[/itex] with the dot product formula then find the cross product between [itex]\vec{a}[/itex] and [itex]\vec{b}[/itex]. Probably not the right way to do the question though, there might be a formula or method I am not aware.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: 3D Vectors Problem - Find Cross Product

**Physics Forums | Science Articles, Homework Help, Discussion**