MHB 5.2 another Ax=B with an inverse

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary
The discussion revolves around solving the matrix equation AX = B, given the inverse matrix A^{-1} and the vector B. The solution X, which includes variables x, y, and z, is derived as X = A^{-1}B, yielding x = 7, y = 4, and z = 6. Participants highlight the advantage of the two zeros in the third column of matrix A, allowing for a simpler solution of x and y independently of z. The equations are manipulated to eliminate variables and confirm the values of x, y, and z. The discussion concludes that the method used effectively utilizes the structure of the matrix for solving the system.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Suppose we are given
$A^{-1} =
\begin{bmatrix}
1 & 4 & 0 \\
2 & 3 & 0 \\
4 & 2 & 2
\end{bmatrix}
=
\left[\begin{array}{rrr|rrr}
1&4&0&1&0&0\\
2&3&0&0&1&0\\
4&2&2&0&0&1
\end{array}\right]$
then
$A=
\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}$
Solve the matrix equation $AX=B$ to find $x$, $y$ and $z$ where $X =
\begin{bmatrix}
x \\y \\z
\end{bmatrix},
\textit{ and }
B = \begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$\therefore AX=B$ is
$\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x \\y \\z
\end{bmatrix}
=\begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$W\vert A$ returned
$x=7,y=4,z=6$ok my question is that A has 2 zero's in $C_3$
I was able to get x=7 and y=4 by a simple double simultanious equation
but not sure what the proper methed is take advantage of the 2 zeros
 
Physics news on Phys.org
karush said:
Suppose we are given
$A^{-1} =
\begin{bmatrix}
1 & 4 & 0 \\
2 & 3 & 0 \\
4 & 2 & 2
\end{bmatrix}
=
\left[\begin{array}{rrr|rrr}
1&4&0&1&0&0\\
2&3&0&0&1&0\\
4&2&2&0&0&1
\end{array}\right]$
then
$A=
\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}$
Solve the matrix equation $AX=B$ to find $x$, $y$ and $z$ where $X =
\begin{bmatrix}
x \\y \\z
\end{bmatrix},
\textit{ and }
B = \begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$\therefore AX=B$ is
$\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x \\y \\z
\end{bmatrix}
=\begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$W\vert A$ returned
$x=7,y=4,z=6$ok my question is that A has 2 zero's in $C_3$
I was able to get x=7 and y=4 by a simple double simultanious equation
but not sure what the proper methed is take advantage of the 2 zeros
If you are asking if it makes sense to write out the two equations in x and y that don't involve z and solving the simpler system for x and y then I think you are doing just fine.

-Dan
 
You are given that A^{-1} exists and is equal to \begin{bmatrix}1& 4 & 0 \\ 2 & 3 & 0 \\ 4 & 2 & 2 \end{bmatrix}. So the solution to AX= B is just X= A^{-1}B.

With B given as \begin{bmatrix}-1 \\ 2 \\ 3\end{bmatrix}, as here, we have immediately that X= \begin{bmatrix}x \\ y \\ z \end{bmatrix}= \begin{bmatrix}1& 4 & 0 \\ 2 & 3 & 0 \\ 4 & 2 & 2 \end{bmatrix}\begin{bmatrix}-1 \\ 2 \\ 3\end{bmatrix}= \begin{bmatrix}7 \\ 4 \\ 6\end{bmatrix}. That is, x= 7, y= 4, and z= 6. But we can write the initial "AX= B" as the system of equstions -\frac{3}{5}x+ \frac{4}{5}y= -1, \frac{2}{5}x- \frac{1}{5}y= 2, and \frac{4}{5}x- \frac{7}{5}y+ \frac{1}{2}z= 3. As topsquark said, the fact that the first two entries in the last column are "0" mean that the first two equations have no "z" and can be solved for x and y indpendently of z. I would first multiply each equation by 5 to get -3x+ 4y= -5 and 2x- y= 10. Multiply the second equation by 4 to geta 8x- 4y= 40 and add that to the first equation to eliminate y and get 5x= 35 so that x= 7. Setting x= 7 in -3x+ 4y= -5 gives -21+ 4y= -5 so that 4y= 16 and y= 4. Finally, put x= 7, y= 4 into the last equation to get \frac{28}{5}- \frac{28}{5}+ \frac{1}{2}z= \frac{1}{2}z= 3 so that z= 6. We get x= 7, y= 4, z= 6 as before.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K