5.2 another Ax=B with an inverse

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary
SUMMARY

The discussion centers on solving the matrix equation AX = B using the inverse matrix A-1. Given A-1 as [1, 4, 0; 2, 3, 0; 4, 2, 2] and B as [-1; 2; 3], the solution yields X = [7; 4; 6]. The presence of two zeros in column C3 allows for simplification, enabling the independent resolution of x and y without involving z. The final values obtained are x = 7, y = 4, and z = 6.

PREREQUISITES
  • Matrix algebra, specifically matrix inversion
  • Understanding of linear equations and systems
  • Knowledge of Gaussian elimination techniques
  • Familiarity with matrix multiplication
NEXT STEPS
  • Study the properties of matrix inverses in linear algebra
  • Learn about Gaussian elimination and its applications in solving systems of equations
  • Explore the use of augmented matrices for solving linear systems
  • Investigate the implications of zero entries in matrices on solution strategies
USEFUL FOR

Students and professionals in mathematics, engineering, and computer science who are working with linear algebra and matrix equations, particularly those looking to enhance their problem-solving skills in systems of equations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Suppose we are given
$A^{-1} =
\begin{bmatrix}
1 & 4 & 0 \\
2 & 3 & 0 \\
4 & 2 & 2
\end{bmatrix}
=
\left[\begin{array}{rrr|rrr}
1&4&0&1&0&0\\
2&3&0&0&1&0\\
4&2&2&0&0&1
\end{array}\right]$
then
$A=
\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}$
Solve the matrix equation $AX=B$ to find $x$, $y$ and $z$ where $X =
\begin{bmatrix}
x \\y \\z
\end{bmatrix},
\textit{ and }
B = \begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$\therefore AX=B$ is
$\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x \\y \\z
\end{bmatrix}
=\begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$W\vert A$ returned
$x=7,y=4,z=6$ok my question is that A has 2 zero's in $C_3$
I was able to get x=7 and y=4 by a simple double simultanious equation
but not sure what the proper methed is take advantage of the 2 zeros
 
Physics news on Phys.org
karush said:
Suppose we are given
$A^{-1} =
\begin{bmatrix}
1 & 4 & 0 \\
2 & 3 & 0 \\
4 & 2 & 2
\end{bmatrix}
=
\left[\begin{array}{rrr|rrr}
1&4&0&1&0&0\\
2&3&0&0&1&0\\
4&2&2&0&0&1
\end{array}\right]$
then
$A=
\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}$
Solve the matrix equation $AX=B$ to find $x$, $y$ and $z$ where $X =
\begin{bmatrix}
x \\y \\z
\end{bmatrix},
\textit{ and }
B = \begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$\therefore AX=B$ is
$\begin{bmatrix}
-\frac{3}{5}&\frac{4}{5}&0\\ \frac{2}{5}&-\frac{1}{5}&0\\ \frac{4}{5}&-\frac{7}{5}&\frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
x \\y \\z
\end{bmatrix}
=\begin{bmatrix}
-1 \\2 \\3
\end{bmatrix}$
$W\vert A$ returned
$x=7,y=4,z=6$ok my question is that A has 2 zero's in $C_3$
I was able to get x=7 and y=4 by a simple double simultanious equation
but not sure what the proper methed is take advantage of the 2 zeros
If you are asking if it makes sense to write out the two equations in x and y that don't involve z and solving the simpler system for x and y then I think you are doing just fine.

-Dan
 
You are given that A^{-1} exists and is equal to \begin{bmatrix}1& 4 & 0 \\ 2 & 3 & 0 \\ 4 & 2 & 2 \end{bmatrix}. So the solution to AX= B is just X= A^{-1}B.

With B given as \begin{bmatrix}-1 \\ 2 \\ 3\end{bmatrix}, as here, we have immediately that X= \begin{bmatrix}x \\ y \\ z \end{bmatrix}= \begin{bmatrix}1& 4 & 0 \\ 2 & 3 & 0 \\ 4 & 2 & 2 \end{bmatrix}\begin{bmatrix}-1 \\ 2 \\ 3\end{bmatrix}= \begin{bmatrix}7 \\ 4 \\ 6\end{bmatrix}. That is, x= 7, y= 4, and z= 6. But we can write the initial "AX= B" as the system of equstions -\frac{3}{5}x+ \frac{4}{5}y= -1, \frac{2}{5}x- \frac{1}{5}y= 2, and \frac{4}{5}x- \frac{7}{5}y+ \frac{1}{2}z= 3. As topsquark said, the fact that the first two entries in the last column are "0" mean that the first two equations have no "z" and can be solved for x and y indpendently of z. I would first multiply each equation by 5 to get -3x+ 4y= -5 and 2x- y= 10. Multiply the second equation by 4 to geta 8x- 4y= 40 and add that to the first equation to eliminate y and get 5x= 35 so that x= 7. Setting x= 7 in -3x+ 4y= -5 gives -21+ 4y= -5 so that 4y= 16 and y= 4. Finally, put x= 7, y= 4 into the last equation to get \frac{28}{5}- \frac{28}{5}+ \frac{1}{2}z= \frac{1}{2}z= 3 so that z= 6. We get x= 7, y= 4, z= 6 as before.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K