- #1
Silviu
- 624
- 11
Hello! I understand that the vector formed of the scalar and vector potential in classical EM behaves like a 4-vector (##A^\nu=\Lambda^\nu_\mu A^\mu##). Does this means that the if we make a vector with the 3 components of B field and 3 of E field, so a 6 components vector V, will it transform as ##V^\nu=M(\Lambda^\nu_\mu) V^\mu##, with M being a 6-dimensional representation of the Lorentz group? So can we build all the tensorial formalism of EM using this 6-dimensional representation, in the same way we did with a 4-vector representation?