Is Static Friction the Dominant Force in a Block on Top of a Slab System?

  • Thread starter Thread starter Bashyboy
  • Start date Start date
  • Tags Tags
    Block
Click For Summary
The discussion centers on determining whether static friction is the dominant force acting on a block resting on a slab when a horizontal force is applied. The scenario involves a 40 kg slab on a frictionless floor with a 10 kg block on top, where static friction has a coefficient of 0.60. Participants agree that static friction should be considered as it prevents the block from sliding off due to inertia when the slab is pulled. To analyze the situation mathematically, it's suggested to compute the maximum static friction force and compare it to the inertial force acting on the block. This approach will help confirm whether static friction is sufficient to keep the block moving with the slab.
Bashyboy
Messages
1,419
Reaction score
5

Homework Statement


In the figure, a slab of mass m1=40kg rests on a frictionless floor, and a block of mass m2=10kg
rests on top of the slab. Between block and slab, the coefficient of static friction is μs=0.60, and
the coefficient of kinetic friction is μk=0.40. A horizontal force F of magnitude 100 N begins to
pull directly on the block, as shown.


Homework Equations





The Attempt at a Solution


One question I have is, what sort of friction is acting, kinetic or static? I figured that it would be static. When the force F begins pulling on m1, intertia will act to keep m2 from sliding with the slab, giving it the impression that it is moving to the left, relative to the slab's point of view. Hence, the static friction force will balance this "inertial force" that is trying to act, thereby causing the block to move in unison with the slab, or mathematically, a1 = a2.

How do I prove this mathematically, though. Do I need to compute the static friction force and compare it to some other force?
 

Attachments

  • diagram.png
    diagram.png
    523 bytes · Views: 543
Physics news on Phys.org
What is the problem? What do you have to find?
 
Assuming you have to find acceleration:
Have you drawn the FBDs for the blocks?
What are the forces acting on the blocks?
Also what do you mean by 'inertial force'? I think you are not clear on its definition, if so google it up!
 
Sorry, here are the questions:

(a) Choose the directions of your coordinate system.
(b) Identify all forces acting on the block and the slab.
(c) Write down Newton’s 2nd law for the block and the slab.
In unit‐vector notation, what are the resulting accelerations a1 and a1.
 
Bashyboy said:
One question I have is, what sort of friction is acting, kinetic or static? I figured that it would be static. When the force F begins pulling on m1, intertia will act to keep m2 from sliding with the slab, giving it the impression that it is moving to the left, relative to the slab's point of view. Hence, the static friction force will balance this "inertial force" that is trying to act, thereby causing the block to move in unison with the slab, or mathematically, a1 = a2.

How do I prove this mathematically, though. Do I need to compute the static friction force and compare it to some other force?

The usual approach would be to make an assumption (static friction rules or doesn't rule) and see if it results in a contradiction. Probably easier to check the "static friction rules" case. So yes, compute the maximal static friction force and see if the top block's inertial force exceeds it.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
61
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
13
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K