MHB A complex numbers' modulus identity.

AI Thread Summary
The discussion focuses on proving the identity involving the modulus of complex numbers, specifically that |z_1| + |z_2| equals the sum of two expressions involving the average of z_1 and z_2 and the square root of their product. The approach suggested involves squaring both sides of the identity to simplify the proof, leveraging the non-negativity of the terms. A connection to the algebraic identity a^2 + 2ab + b^2 is noted, where a and b are the square roots of z_1 and z_2, respectively. The discussion highlights the potential complexity of the proof and seeks a more efficient method to demonstrate the identity. Ultimately, the conversation emphasizes the need for a clever shortcut in the proof process.
Alone
Messages
57
Reaction score
0
I am searching for a shortcut in the calculation of a proof.

The question is as follows:

2.12 Prove that:

$$|z_1|+|z_2| = |\frac{z_1+z_2}{2}-u|+|\frac{z_1+z_2}{2}+u|$$

where $z_1,z_2$ are two complex numbers and $u=\sqrt{z_1z_2}$.

I thought of showing that the squares of both sides of the above identity are equal, in which case since both sides of the above identity are nonnegative we will get the above identity.

The problem that it seems too tedious work, unless there's some trick to be used here?
 
Mathematics news on Phys.org
You have [math]\left|\frac{z_1+ z_2}{2}- \sqrt{z_1z_2}\right|= \left|\frac{z_1- 2\sqrt{z_1z_2}+ z_2}{2}\right|[/math].

Noting the resemblance to [math]a^2+ 2ab+ b^2[/math] I would let [math]a= \sqrt{z_1}[/math] and [math]b= \sqrt{z_2}[/math]. Then [math]\left|\frac{z_1- 2\sqrt{z_1z_2}+ z_2}{2}\right|= \frac{(a- b)^2}{2}[/math]. Do the same thing for [math]\left|\frac{z_1+ z_2}{2}+ \sqrt{z_1z_2}\right|= \left|\frac{z_1+ 2\sqrt{z_1z_2}+ z_2}{2}\right|[/math]
 
Last edited by a moderator:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top