DreamWeaver
- 297
- 0
From the logarithmic integral representation of the Dilogarithm, $$\text{Li}_2(x)$$, $$|x| \le 1$$, prove the reflection formula for the Dilogarithm. Dilogarithm definition:$$\text{Li}_2(x) = -\int_0^1\frac{\log(1-xt)}{t}\, dt = \sum_{k=1}^{\infty}\frac{x^k}{k^2}$$Dilogarithm reflection formula:$$\text{Li}_2(x) + \text{Li}_2(1-x) = \frac{\pi^2}{6}-\log x\log (1-x)$$Where$$\text{Li}_2(1) = \sum_{k=1}^{\infty}\frac{1}{k^2} = \zeta(2) = \frac{\pi^2}{6}$$Hint:
The clue is in the thread title...