A fractional logarithm integral

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$\int_{0}^{1}\frac{\log(1+x^{2})}{1+x}dx$$ and its equivalence to the expression $$\frac{3}{4}\log^{2}(2)-\frac{{\pi}^{2}}{48}$$. Participants explore various methods of proof, including series expansions and the use of special functions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a series expansion of the logarithm to evaluate the integral, referencing the alternating harmonic series and harmonic numbers.
  • Another participant questions the simplification of the alternating harmonic sum in the proposed solution.
  • A different approach is introduced using the function $$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx$$ and its derivative, leading to a relationship involving the dilogarithm function.
  • Further contributions involve identities related to the dilogarithm function, suggesting connections to the integral's evaluation.
  • One participant notes that the result can be simplified and hints at a generalization of the integral.

Areas of Agreement / Disagreement

Participants present multiple approaches and methods to evaluate the integral, but there is no consensus on a single solution or method. The discussion remains unresolved with competing views on the best approach.

Contextual Notes

Some participants reference specific mathematical identities and properties of special functions, but the applicability of these identities to the integral remains a point of exploration rather than established fact.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int_{0}^{1}\frac{\log(1+x^{2})}{1+x}dx=\frac{3}{4}\log^{2}(2)-\frac{{\pi}^{2}}{48} $$

Good luck with this one ... :)
 
Physics news on Phys.org
ZaidAlyafey said:
Prove the following

$$\int_{0}^{1}\frac{\log(1+x^{2})}{1+x}dx=\frac{3}{4}\log^{2}(2)-\frac{{\pi}^{2}}{48} $$

Good luck with this one ... :)

Remember the well known logarithmic series we write...

$\displaystyle \frac{\ln (1+ x^{2})}{1+x} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\ \frac{x^{2 n}}{1+x}\ (1)$

... and now we remember the formula...

$\displaystyle \int_{0}^{1} \frac{x^{2 n}}{1 + x}\ dx = \frac{1}{2}\ (H_{n} - H_ {n-\frac{1}{2}})\ (2)$

... where $H_{n}$ is the Harmonic Number of order n, and the formula...

$\displaystyle \frac{H_{n} - H_ {n-\frac{1}{2}}}{2} = \ln 2 + \sum_{k=1}^{n} \frac{(-1)^{k}}{k}\ (3)$

... so that we obtain...

$\displaystyle \int_{0}^{1} \frac{\ln (1+x^{2})}{1+x}\ dx = \ln 2\ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\ \sum_{k=1}^{n} \frac{(-1)^{k}}{k} =$

$\displaystyle = \ln^{2} 2 - \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} - \frac{1}{4}\ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} = \frac{3}{4}\ \ln^{2} 2 - \frac{\pi^{2}}{48}\ (4)$

Kind regards

$\chi$ $\sigma$
 
Hey chisigma , I love your solution . I got a question on how you simplified the alternating harmonic sum on the last step ?
 
$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx $$

$$
\begin{align*}
I'(a) = \int^1_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^1_0\frac{1}{(1+ax)}\, dx -\int^1_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+a)-\log(2) \right)\\
&= \frac{\log(1+a)}{a(1-a)}-\frac{\log(2)}{a-1} \\
&= \frac{\log(1+a)}{1-a}+\frac{\log(1+a)}{a} -\frac{\log(2)}{1-a} \\

\end{align*}
$$Using http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937we obtain $$I(a)=-\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right)-\text{Li}_2(-a)+C$$using $$I(0)=0$$ we obtain $$C=0$$$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx =- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right) -\text{Li}_2(-a)\,\,\,\, \text{valid for }0\leq\text{Re}(a) <1$$Now we make a little trick $$I(i)+I(-i) = \int^1_0 \frac{\log(1+x^2)}{1+x}\, dx$$

$$ \int^1_0 \frac{\log(1+x^2)}{1+x}\, dx = -2\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-i}{2}\right)+ \text{Li}_2 \left(\frac{1+i}{2}\right) -\text{Li}_2(-i)-\text{Li}_2(i)$$

The result is numerically equivalent to the result we are looking for and it can be simplified , I know the answer looks nasty (Tmi) , but the complex conjugate that appears on the logarithms is rather promising ,furthermore this will allow us to generlaize the integral in this http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937.
 
To complete the solution we can use the following

1-$$\operatorname{Li}_{\,n}(-z) + \operatorname{Li}_{\,n}(z) = 2^{1-n} \,\operatorname{Li}_{\,n}(z^2)$$

Hence

$$-\operatorname{Li}_{\,2}(-i) - \operatorname{Li}_{\,2}(i) =- \frac{1}{2} \,\operatorname{Li}_{\,2}(-1) = \frac{\pi^2}{24}$$

2-$$\operatorname{Li}_2(z) + \operatorname{Li}_{2}(1-z) = \frac{\pi^2}{6}-\log(z) \log(1-z) \,\,\,\,$$

$$\operatorname{Li}_2\left(\frac{1+i}{2}\right) + \operatorname{Li}_{2}\left(1-\frac{1+i}{2}\right) = \frac{\pi^2}{6}-\log\left(\frac{1+i}{2}\right) \log \left(1-\frac{1+i}{2} \right) \,\,\,\,=\frac{\pi^2}{6}-\frac{\log^2(2)}{4}-\frac{\pi^2}{16}$$

Hence we have

$$\int^1_0 \frac{\log(1+x^2)}{1+x}\, dx=-\frac{\pi^2}{6}+\log^2(2)+-\frac{\log^2(2)}{4}+\frac{5\pi^2}{48}+\frac{\pi^2}{24}=\frac{3}{4}\log^2(2)-\frac{\pi^2}{48}$$

I am using the principle logarithm ... For the proofs of the identities you can see my lessons on http://www.mathhelpboards.com/f10/advanced-integration-techniques-3233/index3.html.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K