MHB A fractional logarithm integral

Click For Summary
The integral $$\int_{0}^{1}\frac{\log(1+x^{2})}{1+x}dx$$ is proven to equal $$\frac{3}{4}\log^{2}(2)-\frac{\pi^{2}}{48}$$ through a series of transformations and the use of the logarithmic series. The discussion highlights the application of harmonic numbers and properties of the dilogarithm function, specifically $$\text{Li}_2(z)$$, to derive the result. Key steps involve simplifying alternating harmonic sums and utilizing relationships between dilogarithm values. The final expression confirms the equivalence to the desired result, demonstrating the effectiveness of complex analysis techniques in evaluating the integral. The proof is validated through a series of mathematical identities and transformations.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$\int_{0}^{1}\frac{\log(1+x^{2})}{1+x}dx=\frac{3}{4}\log^{2}(2)-\frac{{\pi}^{2}}{48} $$

Good luck with this one ... :)
 
Mathematics news on Phys.org
ZaidAlyafey said:
Prove the following

$$\int_{0}^{1}\frac{\log(1+x^{2})}{1+x}dx=\frac{3}{4}\log^{2}(2)-\frac{{\pi}^{2}}{48} $$

Good luck with this one ... :)

Remember the well known logarithmic series we write...

$\displaystyle \frac{\ln (1+ x^{2})}{1+x} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\ \frac{x^{2 n}}{1+x}\ (1)$

... and now we remember the formula...

$\displaystyle \int_{0}^{1} \frac{x^{2 n}}{1 + x}\ dx = \frac{1}{2}\ (H_{n} - H_ {n-\frac{1}{2}})\ (2)$

... where $H_{n}$ is the Harmonic Number of order n, and the formula...

$\displaystyle \frac{H_{n} - H_ {n-\frac{1}{2}}}{2} = \ln 2 + \sum_{k=1}^{n} \frac{(-1)^{k}}{k}\ (3)$

... so that we obtain...

$\displaystyle \int_{0}^{1} \frac{\ln (1+x^{2})}{1+x}\ dx = \ln 2\ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\ \sum_{k=1}^{n} \frac{(-1)^{k}}{k} =$

$\displaystyle = \ln^{2} 2 - \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} - \frac{1}{4}\ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} = \frac{3}{4}\ \ln^{2} 2 - \frac{\pi^{2}}{48}\ (4)$

Kind regards

$\chi$ $\sigma$
 
Hey chisigma , I love your solution . I got a question on how you simplified the alternating harmonic sum on the last step ?
 
$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx $$

$$
\begin{align*}
I'(a) = \int^1_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^1_0\frac{1}{(1+ax)}\, dx -\int^1_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+a)-\log(2) \right)\\
&= \frac{\log(1+a)}{a(1-a)}-\frac{\log(2)}{a-1} \\
&= \frac{\log(1+a)}{1-a}+\frac{\log(1+a)}{a} -\frac{\log(2)}{1-a} \\

\end{align*}
$$Using http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937we obtain $$I(a)=-\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right)-\text{Li}_2(-a)+C$$using $$I(0)=0$$ we obtain $$C=0$$$$I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx =- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right) -\text{Li}_2(-a)\,\,\,\, \text{valid for }0\leq\text{Re}(a) <1$$Now we make a little trick $$I(i)+I(-i) = \int^1_0 \frac{\log(1+x^2)}{1+x}\, dx$$

$$ \int^1_0 \frac{\log(1+x^2)}{1+x}\, dx = -2\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-i}{2}\right)+ \text{Li}_2 \left(\frac{1+i}{2}\right) -\text{Li}_2(-i)-\text{Li}_2(i)$$

The result is numerically equivalent to the result we are looking for and it can be simplified , I know the answer looks nasty (Tmi) , but the complex conjugate that appears on the logarithms is rather promising ,furthermore this will allow us to generlaize the integral in this http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937.
 
To complete the solution we can use the following

1-$$\operatorname{Li}_{\,n}(-z) + \operatorname{Li}_{\,n}(z) = 2^{1-n} \,\operatorname{Li}_{\,n}(z^2)$$

Hence

$$-\operatorname{Li}_{\,2}(-i) - \operatorname{Li}_{\,2}(i) =- \frac{1}{2} \,\operatorname{Li}_{\,2}(-1) = \frac{\pi^2}{24}$$

2-$$\operatorname{Li}_2(z) + \operatorname{Li}_{2}(1-z) = \frac{\pi^2}{6}-\log(z) \log(1-z) \,\,\,\,$$

$$\operatorname{Li}_2\left(\frac{1+i}{2}\right) + \operatorname{Li}_{2}\left(1-\frac{1+i}{2}\right) = \frac{\pi^2}{6}-\log\left(\frac{1+i}{2}\right) \log \left(1-\frac{1+i}{2} \right) \,\,\,\,=\frac{\pi^2}{6}-\frac{\log^2(2)}{4}-\frac{\pi^2}{16}$$

Hence we have

$$\int^1_0 \frac{\log(1+x^2)}{1+x}\, dx=-\frac{\pi^2}{6}+\log^2(2)+-\frac{\log^2(2)}{4}+\frac{5\pi^2}{48}+\frac{\pi^2}{24}=\frac{3}{4}\log^2(2)-\frac{\pi^2}{48}$$

I am using the principle logarithm ... For the proofs of the identities you can see my lessons on http://www.mathhelpboards.com/f10/advanced-integration-techniques-3233/index3.html.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
Replies
10
Views
2K
Replies
6
Views
2K