I A. P. French "Matter and Radiation: The Inertia of Energy"

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading A. P. French's book: "Special Relativity". Currently I am focused on the section: "Matter and Radiation: The Inertia of Energy."

Under the heading: "Matter and Radiation: The Inertia of Energy", French writes the following:

French ...Matter & Radiation ... P16.png

French ...Matter & Radiation ... P17  ... png.png




In the above text by Young we read the following:

" ... ... But this being an isolated system, we are reluctant to believe that the center of mass in the box plus its contents have moved. We therefore postulate that the radiation has carried with it the equivalent of a mass m , such that

mL + M(delta)x = 0 ... ... ... 1-7

... ... "


Can someone please explain how Young formulates equation 1-7 ... how does he arrive at this equation?

Peter
 

Attachments

  • French ...Matter & Radiation ... P16.png
    French ...Matter & Radiation ... P16.png
    30.4 KB · Views: 63
Physics news on Phys.org
What specifically is not clear? Once you get the idea that light has momentum and that the centre of mass should not move, the kinematics are quite straightforward, are they not?
 
  • Like
Likes Math Amateur
1-7 is just requiring that the center of mass doesn't move. A mass ##m## has moved one distance and a mass ##M## has moved another, but ##\sum m_ix_i## has not changed.

Note that this argument is slightly handwaving because the light pulse moves ##L-\Delta x##, so he's quietly neglected a term like ##m\Delta x## as being very small.
 
  • Like
Likes Math Amateur
PeroK said:
What specifically is not clear? Once you get the idea that light has momentum and that the centre of mass should not move, the kinematics are quite straightforward, are they not?

Well, I was having some difficulty proving 1-7 ... BUT ... I note that Young writes that 1-7 is a postulate or assumption ... so we do not have to prove it ... and ... if you assume 1-7 to be true then 1-8 follows by simple algebra ...

Peter
 
Ibix said:
1-7 is just requiring that the center of mass doesn't move. A mass ##m## has moved one distance and a mass ##M## has moved another, but ##\sum m_ix_i## has not changed.

Note that this argument is slightly handwaving because the light pulse moves ##L-\Delta x##, so he's quietly neglected a term like ##m\Delta x## as being very small.

I note that Young writes that 1-7 is a postulate or assumption ... so we do not have to prove it ... and ... if you assume 1-7 to be true then 1-8 follows by simple algebra ...

Thanks again for your help ...

Peter
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top