A photon absorption/emission by an atom

  • Thread starter Thread starter -SJ-
  • Start date Start date
  • Tags Tags
    Atom Photon
-SJ-
Messages
44
Reaction score
0
Hello,

I am wondering about a photon absorption/emission by an atom.
We have been told at the university an electron is excited up in Bohr's model if an atom absorbs an energy in a form of photon. What cause an electron release an energy and falls down in Bohr's model? Does not an atom absorbs a photon in case of it doesn't have enough energy to cross a band gap?
Thanks.
 
Physics news on Phys.org
When an electron absorbs energy, either by a photon or by other means such as a collision with another particle, it jumps to a higher energy state, as you know. But, this higher energy state is unstable, and after some amount of time the electron falls from the higher energy state to a lower one. It doesn't necessarily fall all the way back to the lowest energy state, as it can fall into several lower energy states if there are any available, but the key here is that this process is inherent. There's no known "mechanism" that causes this other than this inherent instability. It falls to a lower energy level simply because it can. (At least as far as I understand it. Someone correct me if I'm wrong)

Unfortunately I don't understand the last part of your post.
 
Drakkith said:
But, this higher energy state is unstable, and after some amount of time the electron falls from the higher energy state to a lower one.
That's another thing I would like to ask. Can be said how large amount of time in average this takes? I suppose it depends on a state orbital, is there any suitable equation?

Drakkith said:
Unfortunately I don't understand the last part of your post.
I am sorry for my english, I am still working on my improvement. What I had in my mind was if can electron absorbs an photon until the photon has enough energy to get electron on upwards state.
I was wondering about it since that time and I've hunted out from my memory an electron absorbs and emits an photon normally in terms of elastic collision. But I am not sure with this matter: if a band gap is e.g. 1.3eV wide and electron obtain energy of 1.4eV it be excited on higher energy state and emits a photon with energy of 0.2eV, right?
 
-SJ- said:
That's another thing I would like to ask. Can be said how large amount of time in average this takes? I suppose it depends on a state orbital, is there any suitable equation?

I think so, but I don't know the equation myself.

I am sorry for my english, I am still working on my improvement. What I had in my mind was if can electron absorbs an photon until the photon has enough energy to get electron on upwards state.
I was wondering about it since that time and I've hunted out from my memory an electron absorbs and emits an photon normally in terms of elastic collision. But I am not sure with this matter: if a band gap is e.g. 1.3eV wide and electron obtain energy of 1.4eV it be excited on higher energy state and emits a photon with energy of 0.2eV, right?

I'm still not quite sure what you're asking, but I'll try to answer.

First, realize that each photon is completely absorbed. You can't absorb half of a photon. So all of the photon's energy goes to the electron. Also, a single electron typically only absorbs one photon at a time. If the intensity of the light is very high there is a small chance that it can absorb more than one at a time, however, but this is rare.

If the electron requires 1.3 eV to jump to a specific energy state, then absorbing 1.4 eV will send it to a higher energy state, if one is available. The band gap typically refers to an area where no states exist, but there may or may not be plenty of states higher than the bandgap that would allow a wide range of electron energies.
 
Thank you for the answer. I think I can understand now. Thanks a lot.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top