PeterDonis
Mentor
- 49,300
- 25,342
PeterDonis said:The phrase "matter can simultaneously possesses different values of mass when it is responsible for different combined spatiotemporal geometries" doesn't seem correct to me
After further perusal of the paper, I think the choice of words here is misleading. What is being described in the paper is simply the fact that the externally measured mass of a gravitationally bound system in GR is not equal to the "naive" sum of the masses of its constituents--where "naive" sum means we just add up the locally measured masses of the constituents instead of actually doing a proper integral with a proper integration measure that takes the spacetime geometry into account. The difference between the "naive" sum and the externally measured mass of the system as a whole is usually referred to as "gravitational binding energy".
All of that is fine, but the phrase "different combined spatiotemporal geometries" is misleading. There is only one spacetime geometry in any given spacetime in GR. What I called the "locally measured mass" of a constituent of a gravitationally bound system above is the mass that would be measured by an observer co-located with the constituent, in a local inertial frame in which spacetime curvature can be ignored. But the fact that spacetime curvature can be ignored in such a local measurement does not mean it isn't there; the actual spacetime geometry is still curved, and doesn't change when we go from a local measurement on a single constituent to an external measurement of the system as a whole.
I also don't think "contextuality for mass" is an appropriate term in this context. All of the measurements being described are invariants; they don't depend on who is measuring them or what other measurements are being done in combination with them. So I don't see any valid analogy with contextuality in QM.