- 1,509
- 552
Yes, there is a formal inconsistency exactly as you point out. The reason for that is we have discrete objects (stars) separated by light years modeled by a continuum for data collection and curve fitting. I'm thinking of the discrete objects for the use of varying boundaries for varying mass values while modeling the effect in continuum fashion for comparison with the data (which has to be collected that way obviously).PeterDonis said:Yes, I see that part, but I don't think it's correct. On p. 2, the relationship between proper mass and dynamic mass is given by:
$$
dM_p = \left( 1 - \frac{2 G M}{c^2 r} \right)^{- 1/2} dM
$$
where ##M_p## is proper mass and ##M## is dynamic mass. This formula clearly says that proper mass is locally measured and dynamic mass is externally measured, and the text accompanying the formula agrees with that.
However, on p. 5, in the text you refer to, "proper mass" ##M_p## is now claimed to be "globally determined" and to be the mass that would be measured by an observer in the surrounding FRW region. That is inconsistent with the formula and text on p.2, and also with the standard GR treatment of the spacetime geometry the paper is describing.
In the text on p. 5, you are describing a collapsing FRW region, which I'll call the "interior region" (which, to properly model something like a galaxy, should really be a stationary region containing matter, as I have commented before, but making that change would not affect what I am about to say), surrounded by a Schwarzschild vacuum region, surrounded by an expanding FRW region, which I'll call the "exterior universe". The interior region and Schwarzschild vacuum region together I will call the "bubble".
In the Schwarzschild vacuum region, the mass of the interior region, as measured by orbital dynamics of objects in the Schwarzschild vacuum region, is ##M##. The text on p. 5 agrees with that.
However, the mass of the interior region as measured by an observer in the exterior universe, will not be ##M_p##. An observer in the exterior universe cannot even measure the mass of the interior region directly, using orbital dynamics, because any such orbit will be affected by the stress-energy in the exterior universe that is closer to the bubble than the orbit itself. And if we imagine correcting such a measurement to subtract out the mass in the exterior universe that is affecting the orbit, the remainder will be ##M##, not ##M_p##.
The simplest way to see this is to observe that the function ##m(r)##, which gives the "mass inside radius ##r##" ("mass" meaning the mass measured by orbital dynamics) as a function of the areal radius ##r## centered on the bubble, must be continuous, and its value in the Schwarzschild vacuum region is ##M##. Call the areal radius of the exterior boundary of the bubble ##R_0##. Then we have ##m(R_0) = M##. Now consider ##m(R_0 + dr)##, the value of ##m(r)## just a little way into the exterior universe. This value, by continuity, must be ##M + dM## for ##dM## infinitesimal. But the paper's claim would require it to be ##M_p + dM##, where ##M_p - M## is not infinitesimal. So the paper's claim is inconsistent with continuity of ##m(r)##.
On another note, the mass we obtain from atomic/molecular spectra (ultimately responsible for the mass-luminosity relationship and mass of orbiting gas) is the "locally measured interior mass," since the spectra depend on the mass of the atoms/molecules as would be obtained in a lab on Earth.
One more note and I have to run. Note that the missing mass seems large (as large as a factor of 10 increase), but in terms of spatial curvature on galactic scales, it's tiny. It's in the paper, but I think the spatial curvature for galactic mass densities is on the order of ##10^{-45}m^{-2}##. So, a change by a factor of 10 one way or another isn't very big in terms of GR.