# Cone Volume Calculator

This cone volume calculator can help in solving your school problems or can answer your weird day-to-day questions. How much ice cream fits into my cone? How much cream can I put into the pastry bag? Or what's the volume of my conical champagne glass? If these are the questions that bother you every day, keep reading!

## Cone volume formula

A cone is a solid that has a circular base and a single vertex. To calculate its volume you need to multiply the base area (area of a circle: π * r²) by height and by 1/3:

`volume = (1/3) * π * r² * h`

A cone with a polygonal base is called a pyramid.

## How to find the volume of a cone?

Let's calculate how much water does it fit into the conical part of the funnel.

**Determine the height of the cone**. For our funnel, it's**4 in**.**Enter the base radius**. It may be equal to**3 in**.**The volume of the cone**is displayed in the calculator - in our case, it's**37.7 cu in**.

Remember that you can change the units to meet your exact needs - click on the unit and select from the list. If you need simple volume unit conversion, check out our volume converter tool.

## Truncated cone volume (volume of frustum)

A truncated cone is the cone with the top cut off, with a cut perpendicular to the height. You can calculate frustum volume by subtracting smaller cone volume (the cut one) from the bigger base one, or use the formula:

`volume = (1/3) * π * depth * (r² + r * R + R²)`

, where`R`

is a radius of the base of a cone, and`r`

of top surface radius

An example of the volume of a truncated cone calculation can be found in our potting soil calculator, as the standard flower pot is a frustum of a cone.

## Oblique cone volume

An oblique cone is a cone with an apex that is not aligned above the center of the base. It "*leans*" to one side, similarly to the oblique cylinder. The cone volume formula of the oblique cone is the same as for the right one.

## FAQ

### How do I calculate a cone volume by hand?

To calculate the volume of a cone, follow these instructions:

- Find the cone's
**base area**`a`

. If unknown, determine the cone's**base radius**`r`

. - Find the cone's
**height**`h`

. - Apply the
**cone volume formula**:`volume = (1/3) * a * h`

if you know the base area, or`volume = (1/3) * π * r² * h`

otherwise. **Congratulations**, you've successfully computed the volume of your cone!

### What is the relationship between the volume of cone and cylinder?

If a cone and cylinder have the same height and base radius, then the volume of cone is equal to one third of that of cylinder. That is, you would need the contents of three cones to fill up this cylinder. The same relationship holds for the volume of a pyramid and that of a prism (given that they have the same base area and height).

### What is the volume of a typical ice cream cone?

The size of an ice cream waffle varies quite widely, yet there are a few sizes that can be regarded as typical:

radius | height | volume |
---|---|---|

1 in | 6 in | 6.3 cu in |

3 cm | 11 cm | 34.6 cm³ |

2.5 cm | 11.5 cm | 30.1 cm³ |

1 7/8 in | 4 5/8 in | 9.1 cu in |

1 3/16 in | 6 in | 7.5 cu in |

### What is the volume of cone with radius one and height three?

Recall that the cone volume formula reads:

`volume = (1/3) * π * r² * h`

and so in our case, we have

`volume = (1/3) * π * 1² * 3`

,

so the volume of our cone is exactly `π`

! As we all know, this can be approximated as `volume ≈ 3.14159`

.